K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2015

cm bieu thuc k phu thuoc vao bien x

8 tháng 8 2019

\(\left(3x+1\right)^2+12x-\left(3x+5\right)^2+2\left(6x+3\right)\)

\(=9x^2+6x+1+12x-9x^2-30x-25+12x+6\)

\(=-18\)

Vậy đa thức trên ko phụ thuộc vào biến 

30 tháng 6 2016

A = ( 3x + 1 ) 2 + 12x - ( 3x + 5 ) 2+ 2( 6x + 3 )

=9x2+6x+1+12x-9x2-30x-25+12x+6

=(9x2-9x2)+(6x+12x-30x+12x)+1-25+6

=0+0+(-18)

=-18

30 tháng 6 2016

A=(3x+1)2+12x-(3x+5)2+2(6x+3)

=9x2+6x+1+12x-(9x2+30x+25)+12x+6

=9x2+6x+1+12x-9x2-30x-25+12x+6

=60x-18

\(\Rightarrow\)đề sai 100%

10 tháng 11 2019

Có ai làm dc câu này ko thầy mk cho đề hack não quá

10 tháng 11 2019

\(\frac{12x^4-6x^3-9x^2}{-3x^2}-\left(2-3x\right)\left(2+3x\right)=-\left(3x+1\right)\)\(Dk:-3x^2\ne0\)\(< =>x\ne0\)

<=> \(-4x^2+2x+3-\left(2-3x\right).\left(2+3x\right)=-\left(3x+1\right)\)

<=> \(-4x^2+2x+3-4-6x+6x+9x^2=-3x-1\)

<=>\(5x^2+5x=0\)

<=> \(\orbr{\begin{cases}x=-1\left(n\right)\\x=0\left(l\right)\end{cases}}\)

12 tháng 7 2017

bằng mấy cũng được

11 tháng 7 2021

undefined

11 tháng 7 2021

undefined

27 tháng 7 2023

chuyển vế sang r phân tích thành nhân tử, có thể dùng máy tính bỏ túi nhé bạn

 

27 tháng 7 2023

câu 1: 9\(x^2\) + 12\(x\) + 5  =11

           (3\(x\))2 + 2.3.\(x\) .2 + 22 + 1 = 11

           (3\(x\) + 2)2      =  11 - 1

             (3\(x\) + 2)2    = 10

               \(\left[{}\begin{matrix}3x+2=\sqrt{10}\\3x+2=-\sqrt{10}\end{matrix}\right.\)

                \(\left[{}\begin{matrix}3x=\sqrt{10}-2\\3x=-\sqrt{10}-2\end{matrix}\right.\)

                  \(\left[{}\begin{matrix}x=\dfrac{\sqrt{10}-2}{3}\\x=\dfrac{-\sqrt{10}-2}{3}\end{matrix}\right.\)

                 Vậy S = {\(\dfrac{-\sqrt{10}-2}{3}\); \(\dfrac{\sqrt{10}-2}{3}\)

  Câu 2: 6\(x^2\) + 16\(x\) + 12 = 2\(x^2\)

              6\(x^2\) + 16\(x\) + 12 - 2\(x^2\) = 0

              4\(x^2\) + 16\(x\) + 12 = 0

              (2\(x\))2 + 2.2.\(x\).4 + 16 - 4 = 0

               (2\(x\) + 4)2   = 4

               \(\left[{}\begin{matrix}2x+4=2\\2x+4=-2\end{matrix}\right.\) 

                \(\left[{}\begin{matrix}2x=-2\\2x=-6\end{matrix}\right.\)

                 \(\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)

              S = { -3; -1}

3, 16\(x^2\) + 22\(x\) + 11 = 6\(x\) + 5

    16\(x^2\) + 22\(x\) - 6\(x\)  + 11 - 5 = 0

     16\(x^2\) + 16\(x\) + 6 = 0

      (4\(x\))2 + 2.4.\(x\) . 2 + 22 + 2 = 0

       (4\(x\) + 2)2 + 2 = 0 (1) 

Vì (4\(x\)+ 2)2 ≥ 0 ∀ ⇒ (4\(x\) + 2)2 + 2 > 0 ∀ \(x\) vậy (1) Vô nghiệm

             S = \(\varnothing\)

Câu 4. 12\(x^2\) + 20\(x\) + 10 = 3\(x^2\) - 4\(x\) 

            12\(x^2\) + 20\(x\) + 10 - 3\(x^2\) + 4\(x\) = 0

            9\(x^2\) + 24\(x\) + 10 = 0

           (3\(x\))2 + 2.3.\(x\).4 + 16 - 6 = 0

          (3\(x\) + 4)2 = 6

            \(\left[{}\begin{matrix}3x+4=\sqrt{6}\\3x+4=-\sqrt{6}\end{matrix}\right.\)

              \(\left[{}\begin{matrix}3x=-4+\sqrt{6}\\3x=-4-\sqrt{6}\end{matrix}\right.\)

              \(\left[{}\begin{matrix}x=\dfrac{\sqrt{6}-4}{3}\\x=-\dfrac{\sqrt{6}+4}{3}\end{matrix}\right.\)

                    S = {\(\dfrac{-\sqrt{6}-4}{3}\)\(\dfrac{\sqrt{6}-4}{3}\)}