Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>2x-x=-5/2-1/3
=>x=-17/6
b: =>4(x-2)2=36
=>(x-2)2=9
=>x-2=3 hoặc x-2=-3
hay x=5 hoặc x=-1
c: =>2x+1/2=5/6
=>2x=1/3
hay x=1/6
(-3)x-(6-2x)=4*(-7)-8
=>\(-3x-6+2x=-28-8\)
=>\(-x-6=-36\)
=>-x=-36+6=-30
=>x=30
-3 . x - (6 - 2x) = 4 . (-7) - 8
=> -3x - 6 + 2x = -28 - 8
=> -x - 6 = -36
=> -x = -30
=> x = 30
Tìm số nguyên x, biết:
1) -16 + 23 + x = - 16
7+x=-16
x=-16-7
x=-23
2) 2x – 35 = 15
2x=15+35
2x=50
x=50:2
x=25
3) 3x + 17 = 12
3x=12-17
3x=-5
x=-5/3
4) (2x – 5) + 17 = 6
2x-5=6-17
2x-5=-11
2x=-11+5
2x=-6
x=-6:2
x=-3
5) 10 – 2(4 – 3x) = -4
2(4-3x)=10-(-4)
2(4-3x)=14
4-3x=14:2
4-3x=7
3x=4-7
3x=-3
x=-3:3
x=-1
6) - 12 + 3(-x + 7) = -18
3(-x+7)=-18-(-12)
3(x+7)=-6
x+7=-6:3
x+7=-2
x=-2-7
x=-9
a, 7\(x\).(\(x\) - 10) = 0
\(\left[{}\begin{matrix}7x=0\\x-10=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=10\end{matrix}\right.\)
Vậy \(x\in\) {0; 10}
b, 17.(3\(x\) - 6).(2\(x\) - 18) = 0
\(\left[{}\begin{matrix}3x-6=0\\2x-18=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}3x=6\\2x-18=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=6:3\\x=18:2\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=2\\x=9\end{matrix}\right.\)
1) |x + 2| = 4
\(\Leftrightarrow\orbr{\begin{cases}x+2=4\\x+2=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=-6\end{cases}}\)
2) 3 – |2x + 1| = (-5)
\(\Leftrightarrow\left|2x+1\right|=8\Leftrightarrow\orbr{\begin{cases}2x+1=8\\2x+1=-8\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{7}{2}\\x=\frac{-9}{2}\end{cases}}\)
3) 12 + |3 – x| = 9
\(\Leftrightarrow\left|3-x\right|=-3\)(vô lí)
=>\(x=\varnothing\)
1) I x+2 I=4
\(\Rightarrow\orbr{\begin{cases}x+2=4\\x+2=-4\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-6\end{cases}}}\)
2) \(3-|2x+1|=-5\)
\(\Leftrightarrow|2x+1|=8\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=8\\2x+1=-8\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=7\\2x=-9\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{7}{2}\\x=\frac{-9}{2}\end{cases}}}\)
3) \(12+|3-x|=9\)
\(\Leftrightarrow|3-x|=-3\)(vô lí vì I 3-x I \(\ge\)0)
1) -4 - x > 3 => -4 - 3 > x => -7 > x => số nguyên x lớn nhất = -8
2) Vì x2 + 2 \(\ge\) 2 ; y4 + 6 \(\ge\) 6 với mọi x; y => (x2 + 2). (y4 + 6) \(\ge\) 2.6 = 12 > 10
=> Không tồn tại x; y để thỏa mãn
3) A nguyên khi 5 chia hết cho n- 7 hay n - 7 là ước của 5
mà n nhỏ nhất nên n - 7 nhỏ nhất => n - 7 = -5 => n = 2
4) x2 + 4x + 5 = x(x+ 4) + 5 chia hết cho x + 4 => 5 chia hết cho x + 4
=> x + 4 \(\in\) {5;-5;1;-1} => x \(\in\) {1; -9; -3; -5}
5) Gọi số đó là n
n chia 3 dư 1 => n - 1 chia hết cho 3 => n - 1 + 9 = n + 8 chia hết cho 3
n chia cho 5 dư 2 => n - 2 chia hết cho 5 => n - 2 + 10 = n + 8 chia hết cho 5
=> n + 8 chia hết cho 3 và 5 => n + 8 chia hết cho 15 => n + 8 \(\in\) B(15)
Vì n có 4 chữ số nên n + 8 \(\in\) {68.15 ; 69.15 ; ...' ; 667.15}
=> có (667 - 68) : 1 + 1 = 600 số
6) (2x-5).(y-6) = 17 = 1.17 = 17.1 = (-1).(-17) = (-17).(-1)
=> có 4 cặp x; y thỏa mãn
\(\dfrac{5}{x}+1+\dfrac{4}{x}+1=\dfrac{3}{-13}\\ \Rightarrow\dfrac{9}{x}+2=-\dfrac{3}{13}\\ \Rightarrow\dfrac{9}{x}=-\dfrac{59}{13}\\ \Rightarrow x=-\dfrac{207}{59}\)
a. \(\dfrac{5}{x+1}+\dfrac{4}{x+1}=\dfrac{-3}{13}\)
ĐKXĐ: x ≠ -1
⇔ \(\dfrac{65}{13\left(x+1\right)}+\dfrac{52}{13\left(x+1\right)}=\dfrac{-3\left(x+1\right)}{13\left(x+1\right)}\)
⇔ 65 + 52 = -3(x + 1)
⇔ 117 = -3x - 3
⇔ 117 + 3 = -3x
⇔ 120 = -3x
⇔ x = \(\dfrac{120}{-3}=-40\) (TM)
b. -x + 2 + 2x + 3 + x + \(\dfrac{1}{4}\) + 2x + \(\dfrac{1}{6}\) = \(\dfrac{8}{3}\)
⇔ -x + 2x + x + 2x = \(\dfrac{8}{3}-\dfrac{1}{6}-\dfrac{1}{4}-3-2\)
⇔ 4x = -2,75
⇔ x = \(\dfrac{-2,75}{4}=\dfrac{-11}{16}\)
c. \(\dfrac{3}{2x+1}+\dfrac{10}{4x+2}-\dfrac{6}{6x+2}\) = \(\dfrac{12}{26}\)
⇔ \(\dfrac{3}{2x+1}+\dfrac{10}{2\left(2x+1\right)}-\dfrac{6}{2\left(3x+1\right)}=\dfrac{12}{26}\)
⇔ \(\dfrac{312\left(3x+1\right)}{104\left(2x+1\right)\left(3x+1\right)}\) + \(\dfrac{520\left(3x+1\right)}{104\left(2x+1\right)\left(3x+1\right)}\) - \(\dfrac{312\left(2x+1\right)}{104\left(2x+1\right)\left(3x+1\right)}\)
= \(\dfrac{48\left(2x+1\right)\left(3x+1\right)}{104\left(2x+1\right)\left(3x+1\right)}\)
⇔ 312(3x +1) + 520(3x + 1) - 312(2x + 1) = 48(2x + 1)(3x + 1)
⇔ 936x + 312 + 1560x + 520 - 624x - 312 = (96x + 48)(3x + 1)
⇔ 936x + 312 + 1560x + 520 - 624x - 312 = 288x2 + 96x + 144x + 48
⇔ 936x + 1560x - 624x - 96x - 144x - 288x2 = 48 - 312 - 520 + 312
⇔ 1632x - 288x2 = -472
⇔ -288x2 + 1632x + 472 = 0 (Tự giải tiếp, dùng phương pháp tách hạng tử)
⇔ x = 5,942459684 \(\approx\) 6