Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(=5\left|a\right|+3a=5a+3a=8a\)
b) \(=3\left|a^2\right|+3a^2=3a^2+3a^2=6a^2\)
c) \(=5.2\left|a^3\right|-3a^3=-10a^3-3a^3=-13a^3\)
\(1) \sqrt{9a^2.b^2}\)=3ab
\(2) \sqrt{3a}.\sqrt{27a}=\sqrt{3a}.3\sqrt{3a}=9a\)
\(3) \sqrt{3a^5}.12a=12\sqrt{3a^7}\)
\(4) \sqrt{5a}.\sqrt{45a}-3a=15a-3a=12a\)
\(5) \sqrt{3+\sqrt{a}}.\sqrt{3-\sqrt{a}}=\sqrt{(3+\sqrt{a}).(3-\sqrt{a})} =\sqrt{9-a} \)
\(6) \sqrt{3+\sqrt{5}}.\sqrt{3\sqrt{5}} =\sqrt{\sqrt{3\sqrt{5}}.(3+\sqrt{5})} =\sqrt{9+\sqrt{15}}\)
1) \(\sqrt{9a^2b^2}=3ab\)
2) \(\sqrt{3a}\cdot\sqrt{27a}=9a\)
4) \(\sqrt{5a}\cdot\sqrt{45a}-3a=15a-3a=12a\)
b: B=căn 49a^2+3a
=|7a|+3a
=7a+3a(a>=0)
=10a
c: C=căn16a^4+6a^2
=4a^2+6a^2
=10a^2
d: \(D=3\cdot3\cdot\sqrt{a^6}-6a^3=6\cdot\left|a^3\right|-6a^3\)
TH1: a>=0
D=6a^3-6a^3=0
TH2: a<0
D=-6a^3-6a^3=-12a^3
e: \(E=3\sqrt{9a^6}-6a^3\)
\(=3\cdot\sqrt{\left(3a^3\right)^2}-6a^3\)
=3*3a^3-6a^3(a>=0)
=3a^3
f: \(F=\sqrt{16a^{10}}+6a^5\)
\(=\sqrt{\left(4a^5\right)^2}+6a^5\)
=-4a^5+6a^5(a<=0)
=2a^5
a) \(5\sqrt{25a^2}-25=25\left|a\right|-25==-25a-25\left(a< 0\right)\)
b) \(\sqrt{49a^2}+3a=7\left|a\right|+3a=-7a+3a\left(a< 0\right)=-4a\)
c) \(3\sqrt{9a^6}=9\left|a^3\right|-6a^3\)
Xét \(a\ge0\Rightarrow9\left|a^3\right|-6a^3=9a^3-6a^3=3a^3\)
Xét \(a< 0\Rightarrow9\left|a^3\right|-6a^3=-9a^3-6a^3=-15a^3\)
a) 5\(\sqrt{25a^2}\) - 25 với a < 0
= 5\(\sqrt{\left(5a\right)^2}\) - 25
= 5.\(\left|5a\right|\) - 25
= 5.-(5a) - 25
= -25a - 25 Vì a < 0
b) \(\sqrt{49a^2}\) + 3a với a < 0
= \(\sqrt{\left(7a\right)^2}\) + 3a
= \(\left|7a\right|\) + 3a
= -7a + 3a Vì a < 0
= -4a
c) 3\(\sqrt{9a^6}\) - 6a3 với a bất kì
= 3\(\sqrt{\left(3a^3\right)^2}\) - 6a3
= 3\(\left|3a^3\right|\) - 6a3
= 9a3 - 6a3
= 3a3
Chúc bạn học tốt
1: \(P=\dfrac{3a+3\sqrt{a}-3-a+1-a+4}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)
\(=\dfrac{a+3\sqrt{a}+2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}=\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\)
2: Để P nguyên thì \(\sqrt{a}-1+2⋮\sqrt{a}-1\)
\(\Leftrightarrow\sqrt{a}-1\in\left\{1;-1;2\right\}\)
hay \(a\in\left\{4;0;9\right\}\)
\(\text{Đkxđ:}\left\{{}\begin{matrix}a>0\\a\ne1\end{matrix}\right.\)
\(A=\frac{\sqrt{a}-2}{1-\sqrt{a}}-\frac{\sqrt{a}+1}{\sqrt{a}+2}+\frac{3a-3+\sqrt{9a}}{a+\sqrt{a}-2}\)
\(=\frac{2-\sqrt{a}}{\sqrt{a}-1}-\frac{\sqrt{a}+1}{\sqrt{a}+2}+\frac{3a-3+3\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}\)
\(=\frac{\left(2-\sqrt{a}\right)\left(\sqrt{a}+2\right)-\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)+3a-3+3\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}\)
\(=\frac{-\left(a-4\right)-\left(a-1\right)+3a-3+3\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}\)
\(=\frac{-a+4-a+1+3a-3+3\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}\)
\(=\frac{a+3\sqrt{a}+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}\)
\(=\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}\)
\(=\frac{\sqrt{a}+1}{\sqrt{a}-1}\)
a =4 .bạn xem MÌNH trả lời câu hỏi của NGUYỄN THỊ DIỆP
2b: \(=8\sqrt{2}-3\sqrt{2}-3\sqrt{2}-10\sqrt{2}=-8\sqrt{2}\)
3:
a: \(=\left(\sqrt{6a}+\dfrac{\sqrt{6a}}{3}+\sqrt{6a}\right):\sqrt{6a}\)
=1+1/3+1
=7/3
b: \(=\dfrac{2}{3a-1}\cdot\sqrt{3}\cdot a\cdot\left|3a-1\right|\)
\(=\dfrac{2\sqrt{3}\cdot a\left(1-3a\right)}{3a-1}=-2a\sqrt{3}\)
\(3\sqrt{9a^6}-3a^3=3\left|3a^3\right|-3a^3\)
Xét \(a\ge0\Rightarrow3\left|3a^3\right|-3a^3=9a^3-3a^3=6a^3\)
Xét \(a< 0\Rightarrow3\left|3a^3\right|-3a^3=-9a^3-3a^3=-12a^3\)
\(3\sqrt{9a^6}-3a^3\)
\(=9a^3-3a^3\)
\(=6a^3\)