Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: a>=0; b>=0; ab<>0; a<>1\(M=\dfrac{3\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)-3a+a+\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}\cdot\dfrac{2\left(a+\sqrt{ab}+b\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(a-1\right)}\)
\(=\dfrac{3a-3\sqrt{ab}-3a+a+\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}\cdot\dfrac{1}{\left(\sqrt{a}-\sqrt{b}\right)\left(a-1\right)}\)
\(=\dfrac{a-2\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\cdot\dfrac{1}{a-1}=\dfrac{1}{a-1}\)
b: M nguyên khi a-1 thuộc {1;-1}
=>a thuộc {2;0}
câu a tham khảo ở đây
https://hoc24.vn/cau-hoi/.1145652136620
b) \(x=25\Rightarrow P=\dfrac{\sqrt{25}+1}{\sqrt{25}-3}=\dfrac{6}{2}=3\)
c) \(A< 1\Rightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}-3}< 1\Rightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}-3}-1< 0\Rightarrow\dfrac{4}{\sqrt{x}-3}< 0\)
mà \(4>0\Rightarrow\sqrt{x}-3< 0\Rightarrow\sqrt{x}< 3\Rightarrow x< 9\Rightarrow0\le x< 9,x\ne4\)
a,bn viết đúng đề xíu nhé \(\dfrac{\sqrt{a}+2}{\sqrt{a+3}}\) sửa \(\dfrac{\sqrt{a}+2}{\sqrt{a}+3}\)
đk: \(a\ge0,a\ne4\)
=>\(P=\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}-\dfrac{1}{\sqrt{a}-2}\)
\(=\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)-5-\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)
\(=\dfrac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}=\dfrac{a-\sqrt{a}-12}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)\(=\dfrac{\left(\sqrt{a}-4\right)\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)
\(=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\)
b, \(P=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}=1+\dfrac{-2}{\sqrt{a}-2}\) nguyên\(< =>\sqrt{a}-2\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(=>a\in\left\{9;1;16;0\right\}\)(TM)
a) P = \(\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{a+\sqrt{a}-6}+\dfrac{1}{2-\sqrt{a}}\left(ĐKXĐ:a\ge0;a\ne4\right)\)
P = \(\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}-\dfrac{1}{\sqrt{a}-2}\)
P = \(\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)-5-\left(\sqrt{a}+3\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)
P = \(\dfrac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}=\dfrac{a-\sqrt{a}-12}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)
P = \(\dfrac{\left(\sqrt{a}-4\right)\left(\sqrt{a}+3\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)
P = \(\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\)
b) Ta có: P = \(\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\) = 1 - \(\dfrac{2}{\sqrt{a}-2}\)
Để \(P\in Z\) <=> 1 - \(\dfrac{2}{\sqrt{a}-2}\) \(\in Z\) <=> \(\sqrt{a}-2\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
Ta có bảng sau:
\(\sqrt{a}-2\) | 1 | -1 | 2 | -2 |
\(\sqrt{a}\) | 3 | 1 | 4 | 0 |
a | 9 (TM) | 1 (TM) | 16 (TM) | 0 (TM) |
Vậy để \(P\in Z\) thì \(a\in\left\{0;1;9;16\right\}\)
a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\notin\left\{4;1\right\}\end{matrix}\right.\)
Ta có: \(A=\dfrac{x-4\sqrt{x}+3-\left(2x-4\sqrt{x}-\sqrt{x}+2\right)+x+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{2x-4\sqrt{x}+5-2x+5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}+3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\notin\left\{1;4\right\}\end{matrix}\right.\)
\(A=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x-2}{x-3\sqrt{x}+2}\)
\(=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)-\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x-4\sqrt{x}+3-2x+5\sqrt{x}-2+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}=\dfrac{1}{\sqrt{x}-2}\)
b: Để A>2 thì A-2>0
=>\(\dfrac{1-2\left(\sqrt{x}-2\right)}{\sqrt{x}-2}>0\)
=>\(\dfrac{5-2\sqrt{x}}{\sqrt{x}-2}>0\)
=>\(\dfrac{2\sqrt{x}-5}{\sqrt{x}-2}< 0\)
TH1: \(\left\{{}\begin{matrix}2\sqrt{x}-5>0\\\sqrt{x}-2< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\sqrt{x}>\dfrac{5}{2}\\\sqrt{x}< 2\end{matrix}\right.\)
=>\(x\in\varnothing\)
TH2: \(\left\{{}\begin{matrix}2\sqrt{x}-5< 0\\\sqrt{x}-2>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\sqrt{x}< \dfrac{5}{2}\\\sqrt{x}>2\end{matrix}\right.\)
=>\(2< \sqrt{x}< \dfrac{5}{2}\)
=>4<x<25/4
c: Để A là số nguyên thì \(1⋮\sqrt{x}-2\)
=>\(\sqrt{x}-2\in\left\{1;-1\right\}\)
=>\(\sqrt{x}\in\left\{3;1\right\}\)
=>\(x\in\left\{1;9\right\}\)
kết hợp ĐKXĐ, ta được: x=9
a) Ta có: \(A=\dfrac{3+2\sqrt{3}}{\sqrt{3}}-\dfrac{1}{\sqrt{3}-\sqrt{2}}+\dfrac{2+\sqrt{2}}{\sqrt{2}+1}\)
\(=2+\sqrt{3}-\sqrt{3}-\sqrt{2}+\sqrt{2}\)
=2
Ta có: \(B=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)
\(=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{3}{\sqrt{x}+3}\)
Lời giải:
a.
\(B=\frac{2\sqrt{x}(\sqrt{x}-3)+\sqrt{x}(\sqrt{x}+3)-2x}{(\sqrt{x}+3)(\sqrt{x}-3)}=\frac{x-3\sqrt{x}}{(\sqrt{x}-3)(\sqrt{x}+3)}=\frac{\sqrt{x}(\sqrt{x}-3)}{(\sqrt{x}+3)(\sqrt{x}-3)}=\frac{\sqrt{x}}{\sqrt{x}+3}\)
b.
\(P=AB=\frac{\sqrt{x}-2}{\sqrt{x}}.\frac{\sqrt{x}}{\sqrt{x}+3}=\frac{\sqrt{x}-2}{\sqrt{x}+3}\)
Để $P<0\Leftrightarrow \frac{\sqrt{x}-2}{\sqrt{x}+3}<0$
Mà $\sqrt{x}+3>0$ nên $\sqrt{x}-2<0$
$\Leftrightarrow 0< x< 4$
Kết hợp với ĐKXĐ suy ra $0< x< 4$
Mà $x$ nguyên nên $x\in left\{1; 2; 3\right\}$
1: \(P=\dfrac{3a+3\sqrt{a}-3-a+1-a+4}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)
\(=\dfrac{a+3\sqrt{a}+2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}=\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\)
2: Để P nguyên thì \(\sqrt{a}-1+2⋮\sqrt{a}-1\)
\(\Leftrightarrow\sqrt{a}-1\in\left\{1;-1;2\right\}\)
hay \(a\in\left\{4;0;9\right\}\)