Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1+2-3-4+5+........................+197+198-199-200
=1+(2-3-4+5)+..........+(194-195-196+197)+(198-199-200)
=1+0+................+0+(-201)
=1+(-201)
=-200
Do a là nghiệm của pt nên
\(a^2-a-1=0\Leftrightarrow a^2=a+1\Leftrightarrow a^6=\left(a+1\right)^3=a^3+3a^2+3a+1\)
Và \(a^2-a-1=0\Leftrightarrow a^2-a=1\)
\(P=\dfrac{a^6-3a^3\left(a^2-a\right)-a^3+2018}{a^6-\left(a^3+3a^2+3a+1\right)+2020}=\dfrac{\left(a+1\right)^3-4a^3+2018}{\left(a+1\right)^3-\left(a+1\right)^3+2020}\)
\(P=\dfrac{-3a^3+3a^2+3a+2019}{2020}=\dfrac{-3a\left(a^2-a-1\right)+2019}{2020}=\dfrac{2019}{2020}\)
2b: \(=8\sqrt{2}-3\sqrt{2}-3\sqrt{2}-10\sqrt{2}=-8\sqrt{2}\)
3:
a: \(=\left(\sqrt{6a}+\dfrac{\sqrt{6a}}{3}+\sqrt{6a}\right):\sqrt{6a}\)
=1+1/3+1
=7/3
b: \(=\dfrac{2}{3a-1}\cdot\sqrt{3}\cdot a\cdot\left|3a-1\right|\)
\(=\dfrac{2\sqrt{3}\cdot a\left(1-3a\right)}{3a-1}=-2a\sqrt{3}\)
1: \(=\left(a-3\right)\cdot\dfrac{\left|b\right|}{a-3}=\left|b\right|\)
2: \(\dfrac{1}{3+a}\cdot\sqrt{\dfrac{a^2+6a+9}{b^2}}\)
\(=\dfrac{1}{a+3}\cdot\dfrac{\left|a+3\right|}{b}=\pm\dfrac{1}{b}\)
3: \(=\left|a+1\right|-\dfrac{3a}{a-2}\cdot\dfrac{\left|a-2\right|}{3}\)
\(=\left|a+1\right|-a\)
4: \(=-6\sqrt{3}+6+28+6\sqrt{3}=34\)
a)\(\sqrt{\left(2-\sqrt{3}\right)^2}=2-\sqrt{3}\)
b)\(\sqrt{\left(2-\sqrt{11}\right)^2}=2-\sqrt{11}\)
c)\(2\sqrt{a^2}=2a\) vì a≥0
a) \(=5\left|a\right|+3a=5a+3a=8a\)
b) \(=3\left|a^2\right|+3a^2=3a^2+3a^2=6a^2\)
c) \(=5.2\left|a^3\right|-3a^3=-10a^3-3a^3=-13a^3\)
\(3\sqrt{9a^6}-3a^3=3\left|3a^3\right|-3a^3\)
Xét \(a\ge0\Rightarrow3\left|3a^3\right|-3a^3=9a^3-3a^3=6a^3\)
Xét \(a< 0\Rightarrow3\left|3a^3\right|-3a^3=-9a^3-3a^3=-12a^3\)