Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Do x ∈ Z và 0 < x < 3
⇒ x ∈ {1; 2}
2) Do x ∈ Z và 0 < x ≤ 3
⇒ x ∈ {1; 2; 3}
3) Do x ∈ Z và -1 < x ≤ 4
⇒ x ∈ {0; 1; 2; 3; 4}
\(\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)
\(\Rightarrow x=1\)
\(x\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
\(\left(x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
\(\left(x-1\right)^2=0\)
\(\left(x-1\right)^2=0^2\)
\(\Rightarrow x-1=0\)
\(x=0-1\)
\(x=1\)
Ta có : \(\left(3-x\right)\left|x+5\right|=0\)
\(\Leftrightarrow\orbr{\begin{cases}3-x=0\\\left|x+5\right|=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x+5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}\)
Ta có :
\(\left(3-x\right)\left|x+5\right|=0\)
\(\Rightarrow\orbr{\begin{cases}3-x=0\\\left|x+5\right|=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x+5=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}\)
a) \(\left(x-1\right)^2=0\)
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
b) \(x\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
vậy \(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
c) \(\left(x+1\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
d) \(\left(x+5\right)\left(x^2+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+5=0\\x^2+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-5\\x^2=-1\end{cases}}\Rightarrow x=-5\)
a) ( x - 1 )2 = 0
x - 1 = 0
x = 1
b) x . ( x - 1 ) = 0
\(\Rightarrow\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
c) ( x + 1 ) . ( x - 2 ) = 0
tương tự, xét 2 trường hợp như câu b
d) tương tự, xét 2 trường hợp như câu b
a/ \(2x=0\)
\(\Leftrightarrow x=0\)
Vậy ....
b/ \(\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy ...
c/ \(\left(x-2\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x^2+1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x^2=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x\in\varnothing\end{matrix}\right.\)
Vậy ....
d/ \(\left(x+1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x^2-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x^2=4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\end{matrix}\right.\)
Vậy ...
1) (x-1)(x+5)(-3x+8)=0
\(\hept{\begin{cases}\\\\\end{cases}}\)
1) (x-1)(x+5)(-3+8)=0
= (x-1)(x+5).5 =0
\(\orbr{\begin{cases}x-1=0\\x+5=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0+1=1\\x=0-5=-5\end{cases}}\)
\(\Rightarrow x\in\left\{1;-5\right\}\)
2) (x-1)(x-2)(x-3)=0
\(\hept{\begin{cases}x-1=0\\x-2=0\\x-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0+1=1\\x=0+2=2\\x=0+3=3\end{cases}}\)
\(\Rightarrow x\in\left\{1;2;3\right\}\)
3)(5x+3)(x2+4)(x-1)=0
\(\hept{\begin{cases}5x+3=0\\x^2+4=0\\x-1=0\end{cases}}\Rightarrow\hept{\begin{cases}5x=0-3=-3\\x^2=0-4=-4\\x=0+1=1\end{cases}}\Rightarrow\hept{\begin{cases}x=-3:5\Rightarrow x\in\varnothing\\x\in\varnothing\\x=1\end{cases}}\)
\(\Rightarrow x=1\)
4)x(x2-1)=0
\(\orbr{\begin{cases}x=0\\x^2-1=0\Rightarrow x^2=0+1=1\Rightarrow x^2=1^2;(-1)^2\Rightarrow x\in\left\{1;-1\right\}\end{cases}}\)
\(\Rightarrow x\in\left\{-1;0;1\right\}\)
Xin lỗi về phần bên trên nha! tại tui ấn nhầm nút.Sorry.
\(x\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
vậy \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
\(a,\left(x+5\right)\left(x-4\right)=0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0.\\x-4=0.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5.\\x=4.\end{matrix}\right.\)
Vậy..........
\(b,\left(x-1\right)\left(x-3\right)=0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0.\\x-3=0.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1.\\x=3.\end{matrix}\right.\)
Vậy..........
\(c,\) Sửa đề:
\(\left(3-x\right)\left(x-3\right)=0.\)
\(\Leftrightarrow\left[{}\begin{matrix}3-x=0.\\x-3=0.\end{matrix}\right.\)
\(\Leftrightarrow x=3.\)
Vậy..........
\(d,x\left(x+1\right)=0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0.\\x+1=0.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0.\\x=-1.\end{matrix}\right.\)
Vậy..........
2\(\times\)\(x\)\(\times\)(\(x\) - 1) = 0
\(x\times\)(\(x-1\)) =0
\(\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Vậy \(\in\) { 0; 1}
\(2x\cdot\left(x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}2x=0\\x-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Vậy \(x\in\left\{0;1\right\}\)