Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(S=2.2.2..2\left(2023.số.2\right)\)
\(\Rightarrow S=2^{2023}=\left(2^{20}\right)^{101}.2^3=\overline{....6}.8=\overline{.....8}\)
2) \(S=3.13.23...2023\)
Từ \(3;13;23;...2023\) có \(\left[\left(2023-3\right):10+1\right]=203\left(số.hạng\right)\)
\(\) \(\Rightarrow S\) có số tận cùng là \(1.3^3=27\left(3^{203}=\left(3^{20}\right)^{10}.3^3\right)\)
\(\Rightarrow S=\overline{.....7}\)
3) \(S=4.4.4...4\left(2023.số.4\right)\)
\(\Rightarrow S=4^{2023}=\overline{.....4}\)
4) \(S=7.17.27.....2017\)
Từ \(7;17;27;...2017\) có \(\left[\left(2017-7\right):10+1\right]=202\left(số.hạng\right)\)
\(\Rightarrow S\) có tận cùng là \(1.7^2=49\left(7^{202}=7^{4.50}.7^2\right)\)
\(\Rightarrow S=\overline{.....9}\)
Lời giải:
$2^x+2^{x+1}+2^{x+2}+...+2^{x+2019}=2^{x+2023}-8$
$2^x(1+2+2^2+...+2^{2019})=2^{x+2023}-8$
Xét:
$A=1+2+2^2+...+2^{2019}$
$2A=2+2^2+2^3+...+2^{2020}$
$\Rightarrow A=2A-A=2^{2020}-1$
Khi đó:
$2^x.A=2^{x+2023}-8$
$2^x(2^{2020}-1)=2^{x+2023}-2^3$
$2^x(2^{2023}-2^{2020}+1)-2^3=0$
$2^x(2^{2020}.7+1)=2^3$
$x$ ra số sẽ khá xấu. Bạn coi lại.
\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{2022}{2023}\)
\(\Rightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2022}{2023}\)
\(\Rightarrow1-\dfrac{1}{x+1}=\dfrac{2022}{2023}\)
\(\Rightarrow\dfrac{1}{x+1}=1-\dfrac{2022}{2023}\)
\(\Rightarrow\dfrac{1}{x+1}=\dfrac{1}{2023}\)
\(\Rightarrow x+1=2023\)
\(\Rightarrow x=2022\)
Vậy x = 2022
#kễnh
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{x.\left(x+1\right)}\)
= \(\dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+...+\dfrac{x+1-x}{x.\left(x+1\right)}\)
= \(\dfrac{2}{1.2}-\dfrac{1}{1.2}+\dfrac{3}{2.3}-\dfrac{2}{2.3}+...+\dfrac{x+1}{x.\left(x+1\right)}-\dfrac{x}{x.\left(x+1\right)}\)
= \(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\)
= \(1-\dfrac{1}{x+1}\) =\(\dfrac{2022}{2023}\)
= \(\dfrac{2023}{2023}-\dfrac{1}{x+1}=\dfrac{2022}{2023}\)
⇒ \(x+1=2023\)
\(x=2023-1=2022\)
1)\(\dfrac{1}{2\cdot5}+\dfrac{1}{5\cdot8}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{11}{70}\)
\(\left(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+...+\dfrac{3}{x\left(x+3\right)}\right):3=\dfrac{11}{70}\)
\(\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+.....+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{11}{70}\cdot3\)
\(\dfrac{1}{2}-\dfrac{1}{x+3}=\dfrac{33}{70}\)
\(\dfrac{1}{x+3}=\dfrac{1}{2}-\dfrac{33}{70}\)
\(\dfrac{1}{x+3}=\dfrac{2}{70}\)
\(\dfrac{1}{x+3}=\dfrac{1}{35}\)
\(x+3=35\\ x=35-3\\ x=32\)
2) Số góc đc tạo thành từ 2023 tia chung gốc là:\(\dfrac{2023\cdot2022}{2}=2045253\) (góc)
Bài 1 thì bạn Ánh làm đúng rồi
Bài 2 thì giải chi tiết như này em nhé:
Cứ 1 tia tạo với 2023 - 1 tia còn lại là 2023 - 1 góc
Với 2023 tia thì tạo được số góc là: (2023 - 1)\(\times\) 2023 góc
Theo cách tính trên thì mỗi góc đã được tính hai lần
Vậy số góc tạo được là: (2023-1)\(\times\) 2023: 2 = 2045253 (góc)
Kết luận: ...
Đặt A= 2x+2x+1+......+2x+2018
⇒ 2A=2x+1+......+2x+2018+2x+2019
⇒ A= 2A-A = 2x+2019- 2x*Em trừ mấy cái giống nhau đi á
Theo bài ra:
⇒ 2x+2019- 2x=22023-16=22023-24
⇒x=4
*like hộ phát