Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a, |x-1| -x +1=0
|x-1| = 0-1+x
|x-1| = -1 + x
\(\orbr{\begin{cases}x-1=-1+x\\x-1=1-x\end{cases}}\)
\(\orbr{\begin{cases}x=-1+x+1\\x=1-x+1\end{cases}}\)
\(\orbr{\begin{cases}x=x\\x=2-x\end{cases}}\)
x = 2-x
2x = 2
x = 2:2
x=1
b, |2-x| -2 = x
|2-x| = x+2
\(\orbr{\begin{cases}2-x=x+2\\2-x=2-x\end{cases}}\)
2-x = x+2
x+x = 2-2
2x = 0
x = 0
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Bài 1:
(n+5) / (n+1)
= (n+1+4) / (n+1)
= 1 + 4/(n+1)
Để 4 chia hết cho n+1 thì n+1 là ước dương của 4 vì số nguyên tố ko bao giờ âm
Suy ra n+1 =(1;2;4)
Thử từng trường hợp với n+1 =1 ; n+1 =2; n+1=4 (bạn tự làm)
Suy ra n=3
a) x+10 chia hết cho x+2
=> x+2+8 chia hết cho x+2
=> (x+2)+8 chia hết cho x+2
=> x+2 chia hết cho x+2 ; 8 chia hết cho x+2
=> x+2 thuộc Ư(8)={1,2,4,8}
=>x thuộc {0,2,6}
b) x-1 chia hết cho x+1
=> x+1-2 chia hết cho x+1
=> (x+1)-2 chia hết cho x+1
=> x+1 chia hết cho x+1 ; 2 chia hết cho x+1
=> x+1 thuộc Ư(2)={1,2}
=> x thuộc {0,1}
c) 2x+5 chia hết cho x-1
=> 2x-2+7 chia hết cho x-1
=> 2(x-1)+7 chia hết cho x-1
=> 2(x-1) chia hết cho x-1 ; 7 chia hết cho x-1
=> x-1 thuộc Ư(7)={1,7}
=> x thuộc {2,8}
d) 3x+13 chia hết cho x+2
=> 3x+6+7 chia hết cho x+2
=> 3(x+2)+7 chia hết cho x+2
=> 3(x+2) chia hết cho x+2 ; 7 chia hết cho x+2
=> x+2 thuộc Ư(7)={1,7}
=> x=5
e) 4x+8 chia hết cho 2x+1
=> 4x+2+6 chia hết cho 2x+1
=> 2(2x+1)+6 chia hết cho 2x+1
=> 2(2x+1) chia hết cho 2x+1 ; 6 chia hết cho 2x+1
=> 2x+1 thuộc Ư(6)={1,2,3,6}
=> x thuộc {0,1}
1.
a, \(x-14=3x+18\)
\(\Rightarrow x-3x=18+14\)
\(\Rightarrow-2x=32\Rightarrow x=\frac{32}{-2}=-16\)
b, \(\left(x+7\right).\left(x-9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+7=0\\x-9=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-7\\x=9\end{cases}}}\)
c, \(\left|2x-5\right|-7=22\)
\(\Rightarrow\left|2x-5\right|=22+7\)
\(\Rightarrow\left|2x-5\right|=29\)
\(\Rightarrow\orbr{\begin{cases}2x+5=29\\2x-5=29\end{cases}}\Rightarrow\orbr{\begin{cases}2x=24\\2x=34\end{cases}\Rightarrow}\orbr{\begin{cases}x=12\\x=17\end{cases}}\)
d, \(\left(\left|2x\right|-5\right)-7=22\)
\(\Rightarrow\left(\left|2x\right|-5\right)=29\)
\(\Rightarrow\left|2x\right|=29+5\Rightarrow\left|2x\right|=34\Rightarrow x=\pm17\)
e, \(\left|x+3\right|+\left|x+9\right|+\left|x+5\right|=4x\)
Vì \(\left|x+3\right|\ge0;\left|x+9\right|\ge0;\left|x+5\right|\ge0;4x\ge0\)
Nên \(\left|x+3\right|+\left|x+9\right|+\left|x+5\right|=4x\ge0\)
\(\Rightarrow\left|x+3\right|>0\Rightarrow\left|x+3\right|=x+3\)
\(\left|x+9\right|>0\Rightarrow\left|x+9\right|=x+9\)
\(\left|x+5\right|>0\Rightarrow\left|x+5\right|=x+5\)
Ta có :
\(x+3+x+9+x+5=4x\)
\(\Rightarrow3x+\left(3+9+5\right)=4x\)
\(\Rightarrow4x-3x=17\)
\(\Rightarrow x=17\)
2. a , b sai đề bn
c, \(\left(5x+1\right).\left(y-1\right)=4\)
\(\Rightarrow\left(5x+1\right).\left(y-1\right)\inƯ\left(4\right)\)
\(\text{ }Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Ta có bảng sau :
5x+1 | 1 | -1 | 2 | -2 | 4 | -4 |
y-1 | -4 | 4 | -2 | 2 | -1 | 1 |
x | 0 | -2/5 | 1/5 | -3/5 | 3/5 | -1 |
y | -3 | 5 | -1 | 3 | 0 | 2 |
d, \(5xy-5x+y=5\)
\(\Rightarrow\left(5xy-5x\right)+y=5\)
\(\Rightarrow5x.\left(y-1\right)+y=5\)
\(\Rightarrow\left(5x+1\right).\left(y-1\right)=4\)
\(\Rightarrow\left(5x+1\right).\left(y-1\right)\inƯ\left(4\right)\)
\(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Ta có bảng sau :
5x+1 | 1 | -1 | 2 | -2 | 4 | -4 |
y-1 | -4 | 4 | -2 | 2 | -1 | 1 |
x | 0 | -2 | 1/5 | -3/5 | 3/5 | -1 |
y | -3 | 5 | -1 | 3 | 0 | 2 |
1, 4\(^{x+1}\) + 4\(^0\) = 65
\(\Rightarrow\)4\(^{x+1}\) = 65 - 1
\(\Rightarrow\)x + 1 = 64 : 4
\(\Rightarrow\)x + 1 = 16
\(\Rightarrow\)x = 15
2) 10 + 2x = 16\(^{^2}\): 4\(^3\)
\(\Rightarrow\)10 + 2x = 4
\(\Rightarrow\)2x = 4 - 10
\(\Rightarrow\)2x = -6
\(\Rightarrow\)x = -3