Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2};5y=6z\Rightarrow\frac{y}{6}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{9}=\frac{y}{6}=\frac{z}{10}\)
\(\Rightarrow\frac{x}{9}=\frac{y}{6}=\frac{z}{10}=\frac{x+y-z}{9+6-10}=-\frac{20}{5}=-4\)
\(\Rightarrow x=-36;y=-24;z=-40\)
ta có: 2x=3y => x=\(\frac{3y}{2}\)
5y=6z => z=\(\frac{5y}{6}\)Thay x và z vào biểu thức x+y=z-20 ta được:
\(\frac{3y}{2}\)+y =\(\frac{5y}{6}\)-20
\(\frac{3y.3}{2.3}\)+\(\frac{6y}{6}\)-\(\frac{5y}{6}\)=-20
\(\frac{9y+6y-5y}{6}\)=-20
\(\frac{10y}{6}\)=-20
10y=-20.6
10y= -120
y=-12 . =>x=\(\frac{3.\left(-12\right)}{2}\)=-18 ,z=-10
\(2x+3y=0\)
\(\Leftrightarrow2x=-3y\)
\(\Rightarrow\frac{x}{-3}=\frac{y}{2}\Rightarrow\frac{-x}{3}=\frac{y}{2}\)
Ta có : \(\left(\frac{-x}{3}\right)^2=\frac{-x}{3}\cdot\frac{-x}{3}=\frac{-x}{3}\cdot\frac{y}{2}=\frac{-xy}{3\cdot2}=\frac{54}{6}=9\)
\(\Rightarrow\left(\frac{-x}{3}\right)=\left(\pm3\right)^2\)
\(\Rightarrow\orbr{\begin{cases}\frac{-x}{3}=\frac{y}{2}=-3\\\frac{-x}{3}=\frac{y}{2}=3\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=9;y=-6\\x=-9;y=6\end{cases}}\)
Vậy ......
Ta có:\(\hept{\begin{cases}\left(y-3\right)^{2014}\ge0\\\left|2x+1\right|^{2015}\ge0\end{cases}}\)\(\Rightarrow\left(y-3\right)^{2014}+\left|2x+1\right|^{2015}\ge0\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(y-3\right)^{2014}=0\\\left|2x+1\right|^{2015}=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}y-3=0\\2x+1=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}y=3\\x=-\frac{1}{2}\end{cases}}\)
Ta có: (y-3)2014 \(\ge\)0 và |2x+1|2015 \(\ge\)0
Mà (y-3)2014 + |2x+1|2015 = 0 => (y-3)2014 = 0 và |2x+1|2015 = 0
=> y - 3 = 0 và 2x + 1 = 0
=> y = 3 và 2x = -1
=> y = 3 và x = -1/2.
Vậy y = 3 và x = -1/2.
Ta có :\(\left(2x-5\right)^{2000}\) \(\geq\) \(0\) \(;\) \(\left(3y+4\right)^{2002}\) \(\geq\) \(0\)
\(\implies\) \(\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\) \(\geq\) \(0\) (1)
Mà theo đầu bài ra ta có: \(\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\) <\(0\) (2)
Từ (1);(2) \(\implies\) Không có số nguyên x;y nào nhỏ hơn hoặc bằng 0 thỏa mãn ycbt
a) \(P\left(x\right)=3x^5+5x-4x^4-2x^3+6+4x^2\)
\(P\left(x\right)=3x^5-4x^4-2x^3+5x+6+4\)
\(Q\left(x\right)=2x^4-x+3x^2-2x^3+\frac{1}{4}-x^5\)
\(Q\left(x\right)=-x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\)
b) \(P\left(x\right)+Q\left(x\right)=\left(3x^5-4x^4-2x^3+4x^2+5x+6\right)+\left(-x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\right)\)
\(P\left(x\right)+Q\left(x\right)=3x^5-4x^4-2x^3+4x^2+5x+6-x^5+2x^4-2x^3+3x^2-x\)
\(P\left(x\right)+Q\left(x\right)=2x^5-2x^4-4x^3+7x^2-4x+6\)
\(P\left(x\right)-Q\left(x\right)=\left(3x^5-4x^4-2x^3+4x^2+5x+6\right)-\left(-x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\right)\)
\(P\left(x\right)+Q\left(x\right)=3x^5-4x^4-2x^3+4x^2+5x+6-x^5-2x^4+2x^3-3x^2+x\)
\(P\left(x\right)-Q\left(x\right)=2x^5-6x^4+x^2+6x+6\)
P/S : Câu trên mình sắp xếp sai phần P(x) nha. Tại nhìn nhìn 4x^2 mà tưởng là 4.
Bạn sửa lại môn học phù hợp với câu hỏi nhé!
2\(x\) + 3y = 12; \(x\) + y = 6
\(x\) + y = 6 ⇒ \(x\) = 6 - y
Thay \(x\) = 6 - y vào biểu thức 2\(x\) + 3y ta có:
2.( 6 -y) + 3y = 12
12 - 2y + 3y = 12
12 - y = 12
y = 12 - 12
y = 0
\(x\) = 6 - y
\(x\) = 6 - 0
\(x\) = 6