Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2009-\left|x-2009\right|=x\)
* Nếu \(x-2009\ge0\Rightarrow x\ge2009\)
\(2009-\left(x-2009\right)=x\)
\(2009-x+2009=x\)
\(4018=2x\)
\(x=2009\)(TMĐK)
* Nếu \(x-2009< 0\Rightarrow x< 2009\)
\(2009-\left[-\left(x-2009\right)\right]=x\)
\(2009-\left(-x+2009\right)=x\)
\(2009+x-2009=x\)
\(0x=0\)
Nên \(x\in R\) trừ \(x< 2009\)
Vậy .......
Theo bài ra ta có
(2*-1)^2008>=0 với mọi x
(y-2/5)>=0 với mọi y
|x+y-z|>=0 với mọi x; y; z
=>(3 cái trên) >=0 với mọi x y z
Với (đề bài)
<=>2x-1 mũ 2008=0
y-2/5=0
x+y-z=0
=>x=1/2;y=2/5;z=x+y=1/2+2/5=9/10
R kết luận
>= là lớn hơn hoặc bg
a) \(2009-\left|x-2009\right|=x\)
\(\left|x-2009\right|=2009-x\)
\(\Rightarrow\orbr{\begin{cases}x-2009=x-2009\\x-2009=2009-x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}\text{đúng với mọi x}\\2x=4018\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}\text{đúng với mọi x}\\x=2009\end{cases}}\)
Vậy với mọi x thì đẳng thức luôn đúng
b) Thiếu đề thì phải, ( y- )2018 ?
\(\left(2x-1\right)^{2008}+\left(y-\dfrac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
Nhận xét : \(\left\{{}\begin{matrix}\left(2x-1\right)^{2008}\ge0\forall x\\\left(y-\dfrac{2}{5}\right)^{2008}\ge0\forall y\\\left|x+y+z\right|\ge0\forall x,y,z\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(2x-1\right)^{2008}=0\\\left(y-\dfrac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{2}{5}\\z=-\dfrac{9}{10}\end{matrix}\right.\)
Vì mọi hạng tử trong đa thức đều lớn hơn hoặc bằng 0 nên ta xét 3 trường hợp:
(+) \(\left(2x-10\right)^{2008}=0\) \(\Rightarrow\) \(2x-1=0\)
\(\Rightarrow x=\frac{1}{2}\)
(+) \(\left(y-\frac{2}{5}\right)^{2008}\) \(\Rightarrow y-\frac{2}{5}=0\)
\(\Rightarrow y=\frac{2}{5}\)
(+) \(\left|x+y+z\right|=0\) \(\Rightarrow x+y+z=0\)
\(\Rightarrow\) \(\frac{1}{2}+\frac{2}{5}+z=0\)
\(\Rightarrow\) \(\frac{7}{5}+z=0\)
\(\Rightarrow z=-\frac{7}{5}\)
Vì\(\hept{\begin{cases}\left(2x-1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y-z\right|\ge0\end{cases}}\)
=>\(\hept{\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y-z=0\end{cases}}\)=>\(\hept{\begin{cases}2x=1\\y=\frac{2}{5}\\x+y-z=0\end{cases}}\)=>\(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{2}+\frac{2}{5}=\frac{9}{10}\end{cases}}\)
KL: (x,y,z)=(\(\frac{1}{2};\frac{2}{5};\frac{9}{10}\))
Ta có \(\left(2x-1\right)^{2008}\)\(\ge0\)với mọi x
\(\left(y-\frac{2}{5}\right)^{2008}\ge0\)với mọi y
|x+y-z| \(\ge\)0
Suy ra 2x-1=0 nên x=\(\frac{1}{2}\)
y-\(\frac{2}{5}\)=0 nên y=\(\frac{2}{5}\)
và x+y-z=0 hay \(\frac{1}{2}+\frac{2}{5}\)-z=0 suy ra z=\(\frac{9}{10}\)
=) (2x-1)^2008=0
(y-2/5)^2008=0
/x+y+z/=0=)x+y+z=0
- (2x-1)^2008=0
=)2x-1=0
2x=1
x=1/2
tuong tu ta se tih duoc y
thay vao ta se tih duoc z
duyet nha
c.ơn nhaaaa