K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2021

Trả lời:

a, \(\left(5x+1\right)^2=36\)

\(\Leftrightarrow\orbr{\begin{cases}\left(5x+1\right)^2=6^2\\\left(5x+1\right)^2=\left(-6\right)^2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}5x+1=6\\5x+1=-6\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{7}{5}\end{cases}}}\)

Vậy x = 1; x = - 7/5

b, \(\left(x-2\right)^3=2^6\)

\(\Leftrightarrow\left(x-2\right)^3=\left(2^2\right)^3\)

\(\Leftrightarrow\left(x-2\right)^3=4^3\)

\(\Leftrightarrow x-2=4\)

\(\Leftrightarrow x=6\)

Vậy x = 6

c, \(\left(8x-1\right)^{2x+1}=5^{2x+1}\)

\(\Leftrightarrow8x-1=5\)

\(\Leftrightarrow8x=6\)

\(\Leftrightarrow x=\frac{3}{4}\)

d, \(\left(x-3,5\right)^2+\left(y-1\right)^4\le0\)

Mà \(\left(x-3,5\right)^2\ge0\forall x;\left(y-1\right)^4\ge0\forall y\)

\(\Rightarrow\hept{\begin{cases}x-3,5=0\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=3,5\\y=1\end{cases}}}\)

Vậy x = 3,5; y = 1

9 tháng 10 2020

a) \(2-\left|\frac{3}{2}x-\frac{1}{4}\right|=\left|-\frac{5}{4}\right|\)

\(\Leftrightarrow\left|\frac{3}{2}x-\frac{1}{4}\right|=\frac{3}{4}\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{3}{2}x-\frac{1}{4}=\frac{3}{4}\\\frac{3}{2}x-\frac{1}{4}=-\frac{3}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{3}{2}x=1\\\frac{3}{2}x=-\frac{1}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-\frac{1}{3}\end{cases}}\)

b) \(\left|\frac{7}{8}x+\frac{5}{6}\right|-\left|\frac{1}{2}x+5\right|=0\)

\(\Leftrightarrow\left|\frac{7}{8}x+\frac{5}{6}\right|=\left|\frac{1}{2}x+5\right|\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{7}{8}x+\frac{5}{6}=\frac{1}{2}x+5\\\frac{7}{8}x+\frac{5}{6}=-\frac{1}{2}x-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{3}{8}x=\frac{25}{6}\\\frac{11}{8}x=-\frac{35}{6}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{100}{9}\\x=-\frac{140}{33}\end{cases}}\)

9 tháng 10 2020

c) \(\left|7-x\right|=5x+1\)

\(\Leftrightarrow\orbr{\begin{cases}7-x=5x+1\\x-7=5x+1\end{cases}}\Leftrightarrow\orbr{\begin{cases}6x=6\\4x=-8\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

d) \(\left|x-y+2\right|+\left|2y+1\right|\ge0\)

Mà theo đề  \(\left|x-y+2\right|+\left|2y+1\right|\le0\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left|x-y+2\right|=0\\\left|2y+1\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{5}{2}\\y=-\frac{1}{2}\end{cases}}\)

e) \(\left|\left|2x-1\right|+\frac{1}{2}\right|=\frac{4}{5}\)

\(\Leftrightarrow\orbr{\begin{cases}\left|2x-1\right|+\frac{1}{2}=\frac{4}{5}\\\left|2x-1\right|+\frac{1}{2}=-\frac{4}{5}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left|2x-1\right|=\frac{3}{10}\\\left|2x-1\right|=-\frac{13}{10}\left(vl\right)\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}2x-1=\frac{3}{10}\\2x-1=-\frac{3}{10}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{13}{20}\\x=\frac{7}{20}\end{cases}}\)

21 tháng 9 2018

(5x + 1)2 = 36/49

=> (5x + 1)2 = (6/7)2

=> \(\orbr{\begin{cases}5x+1=\frac{6}{7}\\5x+1=-\frac{6}{7}\end{cases}}\)

=> \(\orbr{\begin{cases}x=-\frac{1}{35}\\x=-\frac{13}{35}\end{cases}}\)

21 tháng 9 2018

Làm từ phần b nha

b) \(\left(x-\frac{1}{9}\right)^3=\frac{2}{3}^6\)

\(\Rightarrow\left(x-\frac{2}{9}\right)^3=\left(\frac{1}{3}\right)^6\)

\(\Rightarrow\left(x-\frac{2}{3}\right)^3=\frac{1^6}{3^6}\)

\(\Rightarrow\left(x-\frac{2}{3}\right)^3=\frac{1}{3^6}\)

\(\Rightarrow\left(x-\frac{2}{3}\right)^3=\frac{1}{729}\)

\(\Rightarrow x-\frac{2}{9}=\frac{1}{9}\)

      \(x=\frac{1}{9}+\frac{2}{9}\)

      \(x=\frac{3}{9}=\frac{1}{3}\)

c) Sai đề rồi, xem lại đi

d) \(\left(x-3,5\right)^2+\left(y-\frac{1}{10}\right)^4< 0\)

\(\Rightarrow\frac{10000y^4-4000y^3+600y^3-40y+10000x^2+122501-70000x}{10000}< 0\)

=> Sai \(\forall y\inℝ\)

Câu 1: Đề thiếu

Câu 2: D

Câu 3: C

Câu 4: B

Câu 5: C

8 tháng 11 2018

TH1: a+b+c  khác 0

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)

\(\Rightarrow2+\frac{a+b-c}{c}=2+\frac{b+c-a}{a}=2+\frac{c+a-b}{b}\)

\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)

\(\Rightarrow a=b=c\)

thay a=b=c vào B ta có:

\(B=\left(1+\frac{a}{a}\right)\cdot\left(1+\frac{a}{a}\right)\cdot\left(1+\frac{a}{a}\right)=2\cdot2\cdot2=8\)

TH2: a+b+c=0

=> c=-a-b

=>a=-b-c

=>b=-a-c

thay a,b,c vào B ta có:

\(B=\left(1+\frac{-\left(a+c\right)}{a}\right)\cdot\left(1+\frac{-\left(b+c\right)}{c}\right)\cdot\left(1+\frac{-\left(a+b\right)}{b}\right)\)

\(B=\left(-\frac{c}{a}\right)\cdot\left(-\frac{b}{c}\right)\cdot\left(-\frac{a}{b}\right)=-1\)

p/s: th2 ko chắc nhá 

9 tháng 11 2016

Câu 1:

Ta thấy:

\(\left(x-\frac{2}{5}\right)^2\ge0\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2\ge0\)

\(\left|2y+1\right|\ge0\)

\(\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|\ge0\)

\(\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|-2,5\ge-2,5\)

hay \(A\ge-2,5\)

Dấu "=" xảy ra khi \(\begin{cases}\left(x-\frac{2}{5}\right)^2=0\\\left|2y+1\right|=0\end{cases}\)

\(\Rightarrow\begin{cases}x-\frac{2}{5}=0\\2y+1=0\end{cases}\)

\(\Rightarrow\begin{cases}x=\frac{2}{5}\\2y=-1\end{cases}\)

\(\Rightarrow\begin{cases}x=\frac{2}{5}\\y=-\frac{1}{2}\end{cases}\)

Vậy GTNN của A là -2,5 đạt được khi \(\begin{cases}x=\frac{2}{5}\\y=-\frac{1}{2}\end{cases}\)

20 tháng 11 2016

Cảm ơn bạn nhiều nhé!

16 tháng 8 2020

ta có \(\hept{\begin{cases}\left(\frac{1}{2}x-5\right)^{20}\ge0\forall x\\\left(y^2-\frac{1}{4}\right)^{10}\ge0\forall y\end{cases}\Rightarrow\hept{\begin{cases}\frac{1}{2}x-5=0\\y^2-\frac{1}{4}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{1}{2}x=5\\y^2=\frac{1}{4}\end{cases}\Leftrightarrow\hept{\begin{cases}x=10\\y=\pm\frac{1}{2}\end{cases}}}}\)

16 tháng 8 2020

Bài làm:

Ta có: \(\hept{\begin{cases}\left(\frac{1}{2}x-5\right)^{20}\ge0\left(\forall x\right)\\\left(y^2-\frac{1}{4}\right)^{10}\ge0\left(\forall y\right)\end{cases}\Rightarrow\left(\frac{1}{2}x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\ge0\left(\forall x,y\right)}\)

Mà theo đề bài: \(\left(\frac{1}{2}x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\le0\)

\(\Rightarrow\hept{\begin{cases}\left(\frac{1}{2}x-5\right)^{20}=0\\\left(y^2-\frac{1}{4}\right)^{10}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=10\\y=\pm\frac{1}{2}\end{cases}}\)