Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{n-1}{n-3}\) \(=\frac{n-3+2}{n-3}=1+\frac{2}{n-3}\)
dể \(\frac{n-1}{n-3}\)thuộc Z <=> \(\frac{2}{n-3}\)thuộc Z
mà n thuộc Z
=> \(n-3\)thuộc ước của 2
=> \(n-3\)thuộc \(\left(1;-1;2;-2\right)\)
=> \(n\)thuộc \(\left(4;2;5;1\right)\)
\(\frac{n-2}{n-5}=\frac{n-5+3}{n-5}\) \(=1+\frac{3}{n-5}\)
tg tự câu trên
a) A=4n-5/n+2 = 4(n+2)-13/n+2
= 4 - 13/n+2
Để A có giá trị nguyên
=> 13/n+2 đạt giá trị nguyên
=> 13 chia hết cho (n+2)
=> n+2 thuộc Ư(13)={±1;±13}
Do n là số nguyên dương => n+2 ≥ 3 và n+2 nguyên
Hay n+2 =13
=> n=11
Vậy n=11 là giá trị nguyên dương thỏa mãn đề.
A = \(\dfrac{4n-5}{n+2}\) (đk n \(\ne\) - 2; n \(\in\) Z)
A \(\in\) Z ⇔ 4n - 5 ⋮ n + 2
4n + 8 - 13 ⋮ n + 2
4.(n + 2) - 13 ⋮ n + 2
13 ⋮ n + 2
n + 2 \(\in\) Ư(13) = {-13; -1; 1; 13}
Lập bảng ta có:
n + 2 | -13 | -1 | 1 | 13 |
n | -15 | -3 | -1 | 11 |
Theo bảng trên ta có: n \(\in\) {-15; -3; -1; 11}
Vì n nguyên dương nên n = 11
a)Để n+3/n-2 thuộc Z
=>n+3 chia hết n-2
=>n-2+5 chia hết n-2
=>5 chia hết n-2
=>n-2 thuộc Ư(5)={1;-1;5;-5}
=>n thuộc {3;1;7;-3}
a)Để \(\frac{\text{n+3}}{\text{n-2}}\) \(\in\) Z
=> n+3 chia hết n-2
=> (n-2) +5 chia hết n-2
=>5 chia hết n-2
=>n-2 thuộc Ư(5)={1;-1;5;-5}
Ta có:
n -2 | 1 | -1 | -5 | 5 |
n | 3 | 1 | -3 | 7 |
a)Ta có:\(\frac{n+3}{n-2}=\frac{n-2+5}{n-2}=\frac{n-2}{n-2}+\frac{5}{n-2}=1+\frac{5}{n-2}\)
=> Để \(1+\frac{5}{n-2}\) là số nguyên âm
=>\(\frac{5}{n-2}\) là số âm và \(\frac{5}{n-2}>-1\)
\(\Rightarrow n-2=-5\)
\(\Rightarrow n=-5-2\)
\(\Rightarrow n=-3\)
\(3n+2⋮3n-5\)
\(3n-5+7⋮3n-5\)
\(7⋮3n-5\)hay \(3n-5\inƯ\left(7\right)=\left\{1;7\right\}\)
3n - 5 | 1 | 7 |
3n | 6 | 12 |
n | 2 tm | 4 tm |
a,2n+1 chia hết cho n-5
2n-10+11 chia hết cho n-5
Suy ra n-5 thuộc Ư[11]
......................................................
tíc giùm mk nha
\(\dfrac{2n+5}{n-3}\) tìm n là số nguyên.
\(\Leftrightarrow2n+5⋮n-3\)
\(\Leftrightarrow2n+5⋮2n-6\)
\(\Leftrightarrow2n-6+11⋮2n-6\)
\(\Leftrightarrow11⋮2n-6\left(vì\text{ }2n-6⋮2n-6\right)\)
\(\Rightarrow2n-6\inƯ\left(11\right)=\left\{-1;1;-11;11\right\}\)
\(\Rightarrow2n\in\left\{6;7;-5;17\right\}\)
\(\Rightarrow n\in\left\{3;\dfrac{7}{2};\dfrac{-5}{2};\dfrac{17}{2}\right\}\)
Mà n là số nguyên
\(\Rightarrow n=3\)
Vậy \(n=3\)
ĐKXĐ: n<>3
Để \(\dfrac{2n+5}{n-3}\) là số nguyên thì \(2n+5⋮n-3\)
=>\(2n-6+11⋮n-3\)
=>\(11⋮n-3\)
=>\(n-3\in\left\{1;-1;11;-11\right\}\)
=>\(n\in\left\{4;2;14;-8\right\}\)