Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
\(\dfrac{7}{9}\cdot\dfrac{3}{35}=\dfrac{1}{5}\cdot\dfrac{1}{3}=\dfrac{1}{15}\)
\(\dfrac{9}{22}\cdot55=\dfrac{9\cdot55}{22}=\dfrac{9\cdot5}{2}=\dfrac{45}{2}\)
Bước 1: Tìm công thức chung của dãy phân số. Ta thấy rằng mẫu số của các phân số trong dãy là các số tự nhiên liên tiếp nhau từ 2 trở đi. Vậy ta có thể viết mẫu số của phân số thứ n là n+1. Còn tử số của phân số thứ n là tổng của các số tự nhiên từ 1 đến n. Vậy phân số thứ n có dạng: (1+2+3+...+n)/(n+1).
Bước 2: Tính tổng của các phân số trong dãy. Ta có công thức tổng của dãy phân số là: Tổng = (1+2+3+...+n)/(n+1). Vậy để tính tổng của 12 phân số trên, ta cần tính tổng của các số từ 1 đến 12 và chia cho 13.
Bước 3: Tính tổng các số từ 1 đến 12. Tổng các số từ 1 đến 12 là: 1+2+3+...+12 = 78.
Bước 4: Tính tổng của 12 phân số. Tổng = 78/13 = 6.
Vậy tổng của 12 phân số trên là 6.
A = \(\dfrac{1}{2}\) + \(\dfrac{5}{6}\) + \(\dfrac{11}{12}\) + \(\dfrac{19}{20}\)+ \(\dfrac{29}{30}\)+ \(\dfrac{41}{42}\)+....+
A = \(\dfrac{1}{1\times2}\)+ \(\dfrac{5}{2\times3}\)+\(\dfrac{11}{3\times4}\)+...+
xét dãy số: 1; 2; 3; 4;...;
Dãy số trên là dãy số cách đều, với khoảng cách là 2-1 = 1
Số thứ 12 của dãy số trên là: (12 - 1)\(\times\)1 + 1 = 12
Phân số thứ 12 của tổng A là: \(\dfrac{155}{12\times13}\) = \(\dfrac{155}{156}\)
A = \(\dfrac{1}{2}\)+\(\dfrac{5}{6}\)+\(\dfrac{11}{12}\)+\(\dfrac{19}{20}\)+\(\dfrac{29}{30}\)+\(\dfrac{41}{42}\)+...+\(\dfrac{155}{156}\)
A = 1 - \(\dfrac{1}{2}\) + 1 - \(\dfrac{1}{6}\)+1-\(\dfrac{1}{12}\)+1-\(\dfrac{1}{20}\)+1-\(\dfrac{1}{30}\)+1-\(\dfrac{1}{42}\)...+1-\(\dfrac{1}{156}\)
A = (1+1+...+1) - (\(\dfrac{1}{2}\)+\(\dfrac{1}{6}\)+..+\(\dfrac{1}{156}\))
A = 1\(\times\)12 - ( \(\dfrac{1}{1\times2}\)+\(\dfrac{1}{2\times3}\)+\(\dfrac{1}{3\times4}\)+...+\(\dfrac{1}{12\times13}\))
A = 12 - (\(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)+ \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{12}\)-\(\dfrac{1}{13}\))
A = 12 - ( 1 - \(\dfrac{1}{13}\))
A = 12 - \(\dfrac{12}{13}\)
A = \(\dfrac{144}{13}\)
A = \(\dfrac{1}{2}\) + \(\dfrac{5}{6}\) + \(\dfrac{11}{12}\) + \(\dfrac{19}{20}\) + \(\dfrac{29}{30}\) + \(\dfrac{41}{42}\) + \(\dfrac{55}{56}\)
A = (1 - \(\dfrac{1}{2}\)) + ( 1 - \(\dfrac{1}{6}\)) + (1 - \(\dfrac{1}{12}\)) + (1 - \(\dfrac{1}{20}\)) +(1-\(\dfrac{1}{30}\))+(1-\(\dfrac{1}{42}\))+(1-\(\dfrac{1}{56}\))
A = (1 + 1+1 + 1 + 1+1+1)- (\(\dfrac{1}{2}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{12}\)+\(\dfrac{1}{20}\)+\(\dfrac{1}{30}\)+\(\dfrac{1}{42}\)+\(\dfrac{1}{56}\))
A = 7 - (\(\dfrac{1}{1\times2}\)+\(\dfrac{1}{2\times3}\)+\(\dfrac{1}{3\times4}\)+\(\dfrac{1}{4\times5}\)+\(\dfrac{1}{5\times6}\)+\(\dfrac{1}{6\times7}\)+\(\dfrac{1}{7\times8}\))
A = 7 - (\(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)+ \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{6}\)+\(\dfrac{1}{6}\)-\(\dfrac{1}{7}\)+\(\dfrac{1}{7}\)-\(\dfrac{1}{8}\))
A = 7 - (\(\dfrac{1}{1}\) - \(\dfrac{1}{8}\))
A = 7 - \(\dfrac{7}{8}\)
A = \(\dfrac{49}{8}\)
Lời giải:
\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}=1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+1-\frac{1}{30}\)
\(=5-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}\right)\)
\(=5-\left(\frac{2-1}{1\times 2}+\frac{3-2}{2\times 3}+\frac{4-3}{3\times 4}+\frac{5-4}{4\times 5}+\frac{6-5}{5\times 6}\right)\)
\(=5-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\right)\)
\(=5-\left(1-\frac{1}{6}\right)=5-\frac{5}{6}=\frac{25}{6}\)
\(A=\frac{1}{4}+\frac{1}{12}+\frac{1}{36}+\frac{1}{108}+\frac{1}{324}\)
\(3A=3\left(\frac{1}{4}+\frac{1}{12}+\frac{1}{36}+\frac{1}{108}+\frac{1}{324}+\frac{1}{972}\right)\)
\(3A=\frac{3}{4}+\frac{3}{12}+\frac{3}{36}+\frac{3}{108}+\frac{3}{324}+\frac{3}{927}\)
\(3A=\frac{3}{4}+\frac{1}{4}+\frac{1}{12}+\frac{1}{36}+\frac{1}{108}+\frac{1}{324}\)
\(2A=3A-A\)
\(2A=\left(\frac{3}{4}+\frac{1}{4}+\frac{1}{12}+\frac{1}{12}+\frac{1}{36}+\frac{1}{108}+\frac{1}{324}\right)-\left(\frac{1}{4}+\frac{1}{12}+\frac{1}{36}+\frac{1}{108}+\frac{1}{324}+\frac{1}{972}\right)\)
\(2A=\frac{3}{4}-\frac{1}{927}\)
\(2A=\frac{729-1}{972}=\frac{728}{972}=\frac{182}{243}\)
\(A=\frac{182}{243}:\frac{1}{2}\)
\(A=\frac{364}{243}\)
\(\frac{7}{12}-\frac{2}{7}+\frac{1}{12}=\left(\frac{7}{12}+\frac{1}{12}\right)-\frac{2}{7}=\frac{2}{3}-\frac{2}{7}=\frac{14}{21}-\frac{6}{21}=\frac{8}{21}\)
\(\frac{2}{3}\)x \(\frac{5}{8}\)x \(\frac{8}{15}\)= \(\frac{2}{3}\)x \(\frac{1}{15}\)= \(\frac{2}{45}\)
\(\frac{22}{5}\)x \(12\)x \(\frac{20}{40}\)= \(\frac{22}{5}\)x \(12\)x \(\frac{1}{2}\)= \(\frac{22}{5}\)x 6 = \(\frac{122}{5}\)
\(\frac{7}{2}\)x \(\frac{26}{7}\)x \(\frac{4}{13}\)= \(\frac{91}{7}\)x \(\frac{4}{13}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)
\(=\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{6\times7}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{6}-\frac{1}{7}\)
\(=1-\frac{1}{7}\)
\(=\frac{6}{7}\)
Kết bạn với mình nha!
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{6}-\frac{1}{7}\)
\(=1-\frac{1}{7}\)
\(=\frac{6}{7}\)
=29/12.2-5/12.2-1/2
=(29/12-5/12).2-1/2
=2.2-1/2
=4-1/2
=8/4-1/2
=7/2
Cảm ơn bạn