Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(3^x=\dfrac{9^8}{27^3\cdot81^2}\)
\(\Rightarrow3^x=\dfrac{\left(3^2\right)^8}{\left(3^3\right)^3\cdot\left(3^4\right)^2}\)
\(\Rightarrow3^x=\dfrac{3^{16}}{3^{15}}\)
\(\Rightarrow3^x=3\)
\(\Rightarrow x=1\)
2) \(\dfrac{2^{4-x}}{16^5}=32^6\)
\(\Rightarrow\dfrac{2^{4-x}}{\left(2^4\right)^5}=\left(2^5\right)^6\)
\(\Rightarrow\dfrac{2^{4-x}}{2^{20}}=2^{30}\)
\(\Rightarrow2^{4-x}=2^{20}\cdot2^{30}\)
\(\Rightarrow2^{4-x}=2^{50}\)
\(\Rightarrow4-x=50\)
\(\Rightarrow x=-46\)
3) \(\dfrac{2^{2x-3}}{4^{10}}=8^3\cdot16^5\)
\(\Rightarrow\dfrac{2^{2x-3}}{\left(2^2\right)^{10}}=\left(2^3\right)^3\cdot\left(2^4\right)^5\)
\(\Rightarrow\dfrac{2^{2x-3}}{2^{20}}=2^{29}\)
\(\Rightarrow2^{2x-3}=2^{49}\)
\(\Rightarrow2x-3=49\)
\(\Rightarrow2x=52\)
\(\Rightarrow x=26\)
\(\left(2x-1\right)^6=\left(2x-1\right)^8\)
\(\Rightarrow\left(2x-1\right)^8-\left(2x-1\right)^6=0\)
\(\Rightarrow\left(2x-1\right)^6\left[\left(2x-1\right)^2-1\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(2x-1\right)^6=0\\\left(2x-1\right)^2-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=0\\\left[{}\begin{matrix}2x-1=1\\2x-1=-1\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=1\\\left[{}\begin{matrix}2x=2\\2x=0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\end{matrix}\right.\)
f(x)=9x3-1/3x+3x2-3x+1/3x2-1/9x3-3x2-9x+27+3x
= 9x3-1/9x3+3x2+1/3x2-3x2-1/3-3x-9x+3x+27
= 80/9x3+1/3x2-28/3x+27
\(\frac{9^2.27^4}{3.81^3}\)=\(\frac{3^4.3^{12}}{3.3^{12}}\)=\(\frac{3^3.1}{1.1}\)=\(3^3\)
TK MIK NHA
vì\(\left|3x^2-27\right|^{2017}\ge0;\left(5y+12\right)^{2018}\ge0\)
=>\(\hept{\begin{cases}\left|3x^2-27\right|^{2017}=0\\\left(5y+12\right)^{2018}=0\end{cases}}\Rightarrow\hept{\begin{cases}\left|3x^2-27\right|^{2017}=0\\\left(5y+12\right)^{2018}=0\end{cases}}\Rightarrow\hept{\begin{cases}3x^2-27=0\\5y+12=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}3x^2=27\\5y=12\end{cases}\Rightarrow\hept{\begin{cases}x^2=9\\y=\frac{12}{5}\end{cases}\Rightarrow}\hept{\begin{cases}x=\pm3\\y=\frac{12}{5}\end{cases}}}\)
Với mọi x,y ta có :
\(\hept{\begin{cases}\left|3x^2-27\right|^{2017}\ge0\\\left(5y+12\right)^{2018}\ge0\end{cases}}\)
Mà \(\left|3x^2-27\right|^{2017}+\left(5y+12\right)^{2018}=0\)
\(\Leftrightarrow\hept{\begin{cases}\left|3x^2-27\right|^{2017}=0\\\left(5y+12\right)^{2018}=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left|3x^2-27\right|=0\\5y+12=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x^2=27\\5y=12\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}x=3\\x=-3\end{cases}}\\y=\frac{12}{5}\end{cases}}\)
Vậy ..
c,2x2+(−6)3:27=0c,2x2+(-6)3:27=0
⇒2x2+(−216):27=0⇒2x2+(-216):27=0
⇒2x2+(−8)=0⇒2x2+(-8)=0
⇒2x2=0−(−8)⇒2x2=0-(-8)
⇒2x2=8⇒2x2=8
⇒x2=8:2⇒x2=8:2
⇒x2=4⇒x2=4
⇒{x2=22x2=(−2)2⇒{x2=22x2=(-2)2
⇒{x=2x=−2⇒{x=2x=-2
Vậy x∈{(−2);2}
\(2x^2+\left(x-1\right)\left(x+1\right)=3x\left(x+1\right)\\ \Leftrightarrow2x^2+\left(x^2-1\right)=3x^2+3x\\ \Leftrightarrow3x^2-2x^2-x^2+3x=-1\\ \Leftrightarrow3x=-1\\ \Leftrightarrow x=-\dfrac{1}{3}\)
Câu a em xem lại khúc -x(3x2) là sao anh chưa hiểu lắm
ta có :
\(3^3=27< 3^x< 3^5=3.81\)
Vậy \(3< x< 5\)