Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+7+7^2+7^3+...+7^{2007}\)
\(7A=7+7^2+7^3+7^4+...+7^{2008}\)
\(7A-A=\left(7+7^2+7^3+7^4+...+7^{2008}\right)-\left(1+7+7^2+7^3+...+7^{2007}\right)\)
\(6A=7^{2008}-1\)
\(A=\frac{7^{2008}-1}{6}\)
Tương tự, \(B=\frac{4^{101}-1}{3},C=\frac{3^{101}-1}{2}\).
\(D=7+7^3+7^5+7^7+...+7^{99}\)
\(7^2.D=7^3+7^5+7^7+7^9+...+7^{101}\)
\(\left(7^2-1\right)D=\left(7^3+7^5+7^7+7^9+...+7^{101}\right)-\left(7+7^3+7^5+7^7+...+7^{99}\right)\)
\(48D=7^{101}-7\)
\(D=\frac{7^{101}-7}{48}\)
Tương tự, \(E=\frac{2^{9011}-2}{3}\)
Mình làm mẫu 1 bài rùi bạn tự giải những bài còn lại nha
1, 7A = 7+7^2+7^3+....+7^2008
6A = 7A - A = (7+7^2+7^3+....+7^2008)-(1+7+7^2+....+7^2007) = 7^2008-1
=> A = (7^2008-1)/6
Tk mk nha
\(A=1+7+7^2+7^3+...+7^{2007}\)
\(\Rightarrow7A=7+7^2+7^3+7^4+...+7^{2008}\)
\(\Rightarrow7A-A=\left(7+7^2+7^3+...+7^{2008}\right)-\left(1+7+7^2+...+7^{2007}\right)\)
\(\Rightarrow6A=7^{2008}-1\)
\(\Rightarrow A=\frac{7^{2008}-1}{6}\)
\(\left(\dfrac{5}{7}-\dfrac{7}{7}\right)-\left[0,2-\left(-\dfrac{2}{7}-\dfrac{1}{10}\right)\right]\)
=\(-\dfrac{2}{7}-\left[\dfrac{1}{5}+\dfrac{2}{7}+\dfrac{1}{10}\right]\)
=\(-\dfrac{2}{7}-\dfrac{1}{5}-\dfrac{2}{7}-\dfrac{1}{10}\)
=\(\left(-\dfrac{2}{7}-\dfrac{2}{7}\right)-\left(\dfrac{1}{5}+\dfrac{1}{10}\right)\)
=\(-\dfrac{4}{7}-\left(\dfrac{2}{10}+\dfrac{1}{10}\right)\)
=\(-\dfrac{4}{7}-\dfrac{3}{10}\)
=\(-\dfrac{40}{70}-\dfrac{21}{70}\)
=\(-\dfrac{61}{70}\)
(3 - \(\dfrac{1}{4}\) + \(\dfrac{2}{3}\)) - (5 - \(\dfrac{1}{3}\) - \(\dfrac{5}{6}\)) - (6 - \(\dfrac{7}{4}\) - \(\dfrac{3}{2}\))
= 3 - \(\dfrac{1}{4}\) + \(\dfrac{2}{3}\) - 5 + \(\dfrac{1}{3}\) + \(\dfrac{5}{6}\) - 6 + \(\dfrac{7}{4}\) + \(\dfrac{3}{2}\)
= (3 - 5 - 6) + ( \(\dfrac{7}{4}\) - \(\dfrac{1}{4}\)) + (\(\dfrac{2}{3}\) + \(\dfrac{1}{3}\)) + \(\dfrac{3}{2}\) + \(\dfrac{5}{6}\)
= - 8 + \(\dfrac{3}{2}\) + 1 + \(\dfrac{3}{2}\) + \(\dfrac{5}{6}\)
= (- 8 + 1) + (\(\dfrac{3}{2}\) + \(\dfrac{3}{2}\)) + \(\dfrac{5}{6}\)
= -7 + 3 + \(\dfrac{5}{6}\)
= - 4 + \(\dfrac{5}{6}\)
= \(\dfrac{-19}{6}\)
1: Ta có: \(23\dfrac{1}{4}\cdot\dfrac{7}{5}-13\dfrac{1}{4}:\dfrac{5}{7}\)
\(=\dfrac{93}{4}\cdot\dfrac{7}{5}-\dfrac{53}{4}\cdot\dfrac{7}{5}\)
\(=\dfrac{7}{5}\cdot10=14\)
2: Ta có: \(\left(1+\dfrac{2}{3}-\dfrac{1}{4}\right)\left(\dfrac{4}{5}-\dfrac{3}{4}\right)^2\)
\(=\dfrac{12+8-3}{12}\cdot\dfrac{1}{400}\)
\(=\dfrac{17}{12}\cdot\dfrac{1}{400}=\dfrac{17}{4800}\)
Bài 1: Tính
\(\text{1)}\) \(\dfrac{5}{8}.\dfrac{7}{30}-\dfrac{5}{2}.\dfrac{1}{8}\)
\(=\dfrac{5}{8}.\dfrac{7}{30}-\dfrac{5}{8}.\dfrac{1}{2}\)
\(=\dfrac{5}{8}.\left(\dfrac{7}{30}-\dfrac{1}{2}\right)\)
\(=\dfrac{5}{8}.\dfrac{-4}{15}\)
\(=\dfrac{-1}{6}\)
\(\text{2)}\) \(\dfrac{21}{10}.\dfrac{3}{4}-\dfrac{21}{10}-\dfrac{3}{4}\)
\(=\dfrac{63}{40}-\dfrac{21}{10}-\dfrac{3}{4}\)
\(=\dfrac{-21}{40}-\dfrac{3}{4}\)
\(=\dfrac{-51}{40}\)
\(\text{3)}\) \(\dfrac{-4}{11}:\dfrac{-6}{11}\)
\(=\dfrac{-4}{11}.\dfrac{11}{-6}\)
\(=\dfrac{4}{6}\)
\(\text{4)}\) \(\dfrac{2}{7}.\dfrac{14}{3}-1\)
\(=\dfrac{4}{3}-1\)
\(=\dfrac{1}{3}\)
\(\text{5)}\) \(\dfrac{4}{7}:\left(\dfrac{1}{5}.\dfrac{4}{7}\right)\)
\(=\dfrac{4}{7}:\dfrac{1}{5}:\dfrac{4}{7}\)
\(=1:\dfrac{1}{5}\)
\(=5\)
\(\text{6)}\) \(\dfrac{12}{7}.\dfrac{7}{4}+\dfrac{35}{11}:\dfrac{245}{121}\)
\(=3+\dfrac{35}{11}.\dfrac{121}{245}\)
\(=3+\dfrac{11}{7}\)
\(=3\dfrac{11}{7}=\dfrac{32}{7}\)
\(\text{7)}\) \(\left(\dfrac{4}{3}+\dfrac{8}{3}\right).\left(\dfrac{7}{4}-\dfrac{6}{4}\right):\left(\dfrac{6}{5}+\dfrac{12}{5}+\dfrac{1}{5}\right)\)
\(=4.\left(\dfrac{7}{4}-\dfrac{6}{4}\right):\left(\dfrac{6}{5}+\dfrac{12}{5}+\dfrac{1}{5}\right)\)
\(=4.\dfrac{1}{4}:\left(\dfrac{6}{5}+\dfrac{12}{5}+\dfrac{1}{5}\right)\)
\(=4.\dfrac{1}{4}:\dfrac{19}{5}\)
\(=1:\dfrac{19}{5}\)
\(=\dfrac{5}{19}\)
\(\text{8)}\) \(\left(\dfrac{1}{4}-\dfrac{1}{4}+\dfrac{\dfrac{1}{9}}{\dfrac{1}{9}}\right):\left(\dfrac{2}{3}+\dfrac{\dfrac{7}{15}}{\dfrac{2}{5}}-\dfrac{1}{6}\right)\)
\(=\left(0+1\right):\left(\dfrac{2}{3}+\dfrac{7}{15}:\dfrac{2}{5}-\dfrac{1}{6}\right)\)
\(=1:\left(\dfrac{2}{3}+\dfrac{7}{6}-\dfrac{1}{6}\right)\)
\(=1:\left(\dfrac{2}{3}+1\right)\)
\(=1:\dfrac{5}{3}\)
\(=\dfrac{3}{5}\)
\(\text{9)}\)
\(\left[\left(\dfrac{2}{193}-\dfrac{3}{389}\right).\dfrac{193}{17}+\dfrac{33}{34}\right]:\left[\left(\dfrac{7}{1931}-\dfrac{11}{3862}\right).\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
\(=\left[\dfrac{199}{75077}.\dfrac{193}{17}+\dfrac{33}{34}\right]:\left[\left(\dfrac{7}{1931}-\dfrac{11}{3862}\right).\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
\(=\left[\dfrac{199}{6613}+\dfrac{33}{34}\right]:\left[\left(\dfrac{7}{1931}-\dfrac{11}{3862}\right).\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
\(=\dfrac{13235}{13226}:\left[\left(\dfrac{7}{1931}-\dfrac{11}{3862}\right).\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
\(=\dfrac{13235}{13226}:\left[\dfrac{3}{3862}.\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
\(=\dfrac{13235}{13226}:\left[\dfrac{3}{50}+\dfrac{9}{2}\right]\)
\(=\dfrac{13235}{13226}:\dfrac{114}{25}\)
\(=\dfrac{330875}{1507764}\)
\(1,-\dfrac{4}{7}+\dfrac{2}{3}\times\dfrac{-9}{14}\)
\(=\dfrac{-4}{7}+\dfrac{-18}{42}\)
\(=\dfrac{-4\times6}{7\times6}+\dfrac{-18}{42}\)
\(=\dfrac{-20}{42}+\dfrac{-18}{42}\)
\(=-\dfrac{38}{42}\)
\(=-\dfrac{19}{21}\)
\(2,\dfrac{17}{13}-\left(\dfrac{4}{13}-11\right)\)
\(=\dfrac{17}{13}-\dfrac{4}{13}+11\)
\(=\dfrac{13}{13}+11\)
\(=1+11\)
\(=12\)
\(3,8\dfrac{2}{7}-\left(3\dfrac{4}{9}+4\dfrac{2}{7}\right)\)
\(=\dfrac{58}{7}-\left(\dfrac{31}{9}+\dfrac{30}{7}\right)\)
\(=\dfrac{58}{7}-\dfrac{31}{9}-\dfrac{30}{7}\)
\(=\dfrac{58}{7}-\dfrac{30}{7}-\dfrac{31}{9}\)
\(=\dfrac{28}{7}-\dfrac{31}{9}\)
\(=\dfrac{28\times9}{7\times9}-\dfrac{31\times7}{9\times7}\)
\(=\dfrac{252}{63}-\dfrac{217}{63}\)
\(=\dfrac{35}{63}\)
\(=\dfrac{5}{9}\)
\(5,\left(\dfrac{2}{3}-1\dfrac{1}{2}\right):\dfrac{4}{3}+\dfrac{1}{2}\)
\(=\left(\dfrac{2}{3}-\dfrac{3}{2}\right):\dfrac{4}{3}+\dfrac{1}{2}\)
\(=\left(\dfrac{2\times2}{3\times2}-\dfrac{3\times3}{2\times3}\right):\dfrac{4}{3}+\dfrac{1}{2}\)
\(=\left(\dfrac{4}{6}-\dfrac{9}{6}\right):\dfrac{4}{3}+\dfrac{1}{2}\)
\(=\dfrac{-5}{6}:\dfrac{4}{3}+\dfrac{1}{2}\)
\(=\dfrac{-5}{6}\times\dfrac{3}{4}+\dfrac{1}{2}\)
\(=\dfrac{-15}{24}+\dfrac{1}{2}\)
\(=\dfrac{-15}{24}+\dfrac{1\times12}{2\times12}\)
\(=\dfrac{-15}{24}+\dfrac{12}{24}\)
\(=\dfrac{-3}{24}\)
\(=-\dfrac{1}{8}\)
\(6,\dfrac{-5}{13}+\dfrac{2}{5}+\dfrac{-8}{13}+\dfrac{3}{5}-\dfrac{3}{7}\)
\(=\left(\dfrac{-5}{13}+\dfrac{-8}{13}\right)+\left(\dfrac{2}{5}+\dfrac{3}{5}\right)-\dfrac{3}{7}\)
\(=\dfrac{-13}{13}+\dfrac{5}{5}-\dfrac{3}{7}\)
\(=-1+1-\dfrac{3}{7}\)
\(=-\dfrac{3}{7}\)
\(7,\dfrac{6}{5}\times\dfrac{3}{7}+\dfrac{6}{5}:\dfrac{7}{10}+\dfrac{6}{5}\)
\(=\dfrac{6}{5}\times\dfrac{3}{7}+\dfrac{6}{5}\times\dfrac{10}{7}+\dfrac{6}{5}\)
\(=\dfrac{6}{5}\times\left(\dfrac{3}{7}+\dfrac{10}{7}+1\right)\)
\(=\dfrac{6}{5}\times\left(\dfrac{3}{7}+\dfrac{10}{7}+\dfrac{1\times7}{1\times7}\right)\)
\(=\dfrac{6}{5}\times\left(\dfrac{3}{7}+\dfrac{10}{7}+\dfrac{7}{7}\right)\)
\(=\dfrac{6}{5}\times\dfrac{20}{7}\)
\(=\dfrac{120}{35}\)
\(=\dfrac{24}{7}\)
2/7+(-1/4)=2/7 +1/4=8/28+7/28=15/28
\(\frac{2}{7}-\left(-\frac{1}{4}\right)=\frac{2}{7}+\frac{1}{4}=\frac{5}{9}\)