
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.




33 : 313 + 50 : 52 = 3-10 + 25 = \(\frac{1}{59049}\) + 25 = \(\frac{1476226}{59049}\)

Bài 1:
a) 02002 < 02023
b) 20220 = 20230
c) 549 < 5510
d) ( 4 + 5 )3 > 42 + 52
đ) 92 - 32 > ( 9 - 3 )2
Bài 2:
a) 32 x 43 - 32 + 333
= 9 x 64 - 9 + 333
= 576 - 9 + 333
= 567 + 333
= 900
b) 5 x 43 + 24 x 5 + 410
= 5 x 64 + 24 x 5 + 1
= 5 x ( 64 + 24 ) + 1
= 5 x 88 + 1
= 440 + 1
= 441
c) 23 x 42 + 32 x 5 - 40 x 12023
= 8 x 16 + 9 x 5 - 40 x 1
= 128 + 45 - 40
= 133
Bài 1 :
a) \(0^{2002}=0;0^{2023}=0\Rightarrow0^{2002}=0^{2023}\)
b) \(2022^0=1;2023^0=1\Rightarrow2022^0=2023^0\)
c) \(54^9< 55^9;55^9< 55^{10}\Rightarrow54^9< 55^{10}\)
d) \(\left(4+5\right)^3>\left(4+5\right)^2;\left(4+5\right)^2>4^2+5^2\Rightarrow\left(4+5\right)^3>4^2+5^2\)
đ) \(9^2-3^2=81-9=82;\left(9-3\right)^2=6^2=36\Rightarrow9^2-3^2>\left(9-3\right)^2\)

1: \(A=2+2^2+2^3+\cdots+2^{100}\)
=>\(2A=2^2+2^3+2^4+\cdots+2^{101}\)
=>\(2A-A=2^2+2^3+2^4+\cdots+2^{101}-2-2^2-2^3-\cdots-2^{100}\)
=>\(A=2^{101}-2\)
2: \(B=1+5+5^2+5^3+\cdots+5^{150}\)
=>\(5B=5+5^2+5^3+\cdots+5^{151}\)
=>\(5B-B=5+5^2+5^3+\cdots+5^{151}-1-5-5^2-\cdots-5^{150}\)
=>\(4B=5^{151}-1\)
=>\(B=\frac{5^{151}-1}{4}\)
3: \(C=3+3^2+\cdots+3^{1000}\)
=>\(3C=3^2+3^3+\cdots+3^{1001}\)
=>\(3C-C=3^2+3^3+\cdots+3^{1001}-3-3^2-\cdots-3^{1000}\)
=>\(2C=3^{1001}-3\)
=>\(C=\frac{3^{1001}-3}{2}\)
Câu 1:
A = 2 + 2\(^2\) + 2\(^3\) + ... + 2\(^{100}\)
2A = 2\(^2\) + 2\(^3\) + ... + 2\(^{100}\) + 2\(^{101}\)
2A - A = (2\(^2\) + 2\(^3\) + ... + 2\(^{100}\)+ 2\(^{101}\)) -(2 + 2\(^2\) + 2\(^3\) + ... + 2\(^{100}\))
A = 2\(^2\) + 2\(^3\) + ... + 2\(^{100}\)+ 2\(^{101}\) - 2 - 2\(^2\) -2\(^3\) - ... - 2\(^{100}\)
A = (2\(^2\) - 2\(^2\)) + (2\(^3\) - 2\(^3\)) + ... + (2\(^{100}\) - 2\(^{100}\)) + (2\(^{101}\) - 2)
A = 0 + 0 + 0 + ... + 0 + 2\(^{101}\) - 2
A = 2\(^{101}\) - 2
Ta có: \(2\cdot5^2+3:71^0-54:3^3\)
\(=2\cdot25+3:1-54:27\)
=50+3-2
=50+1
=51
kết quả là 51 cậu nhé!