Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
127/96 nhé
nếu sai bạn sửa cho mình nhé
thank you
mình cảm ơn trước
\(\dfrac{2}{3}+\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{24}+\dfrac{2}{48}+\dfrac{2}{96}+\dfrac{2}{192}\\ =\dfrac{128}{192}+\dfrac{64}{192}+\dfrac{32}{192}+\dfrac{16}{192}+\dfrac{8}{192}+\dfrac{4}{192}+\dfrac{2}{192}\\ =\dfrac{128+64+32+16+8+4+2}{192}\\ =\dfrac{254}{192}=\dfrac{127}{96}\)
Ta có:
\(S=\dfrac{2}{3}+\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{24}+\dfrac{2}{48}+\dfrac{2}{96}+\dfrac{2}{192}+\dfrac{2}{384}\\ =\dfrac{2}{3}+\dfrac{2}{2\times3}+\dfrac{2}{2\times6}+\dfrac{2}{2\times12}+\dfrac{2}{2\times24}+\dfrac{2}{2\times48}+\dfrac{2}{2\times96}+\dfrac{2}{2\times192}\\ =\dfrac{2}{3}+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{24}+\dfrac{1}{48}+\dfrac{1}{96}+\dfrac{1}{192}\\ \)
\(\dfrac{S}{2}=\dfrac{1}{2}\left(\dfrac{2}{3}+\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{24}+\dfrac{2}{48}+\dfrac{2}{96}+\dfrac{2}{192}+\dfrac{2}{384}\right)\\ =\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{24}+\dfrac{1}{48}+\dfrac{1}{96}+\dfrac{1}{192}+\dfrac{1}{384}\)
\(S-\dfrac{S}{2}=\dfrac{2}{3}+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{24}+\dfrac{1}{48}+\dfrac{1}{96}+\dfrac{1}{192}-\left(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{24}+\dfrac{1}{48}+\dfrac{1}{96}+\dfrac{1}{192}+\dfrac{1}{384}\right)\\ =\dfrac{2}{3}-\dfrac{1}{384}=\dfrac{2\times128-1}{384}\\ =\dfrac{85}{128}\\ \Rightarrow S=\dfrac{85}{128}\times2=\dfrac{85}{64}\)
\(A=\dfrac{2}{3}+\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{24}+\dfrac{2}{48}+\dfrac{2}{96}+\dfrac{2}{192}+\dfrac{2}{384}\)
\(A.2=\dfrac{4}{3}+\dfrac{2}{3}+\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{24}+\dfrac{2}{48}+\dfrac{2}{96}+\dfrac{2}{192}\)
\(A=A.2-A=\dfrac{4}{3}-\dfrac{2}{384}=\dfrac{127}{96}\)
2/3+2/6+2/12+2/24+2/48+2/96+2/192
=2/3+1/3+1/6+1/12+1/24+1/48+1/96
=\(\frac{64+32+16+8+4+2+1}{96}=\frac{127}{96}\)
\(\dfrac{2}{3}+\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{24}+\dfrac{2}{48}+\dfrac{2}{96}+\dfrac{2}{192}\)
\(=2\times\left(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{24}+\dfrac{1}{48}+\dfrac{1}{96}+\dfrac{1}{192}\right)\)
\(=2\times\left(\dfrac{64+32+16+8+4+2+1}{192}\right)\)
\(=\dfrac{127}{96}\)
2/3+2/6+2/12+2/24+2/48+2/96+2/192
=2/3+1/3+1/6+1/12+1/24+1/48+1/96
=\(\dfrac{64+32+16+8+4+2+1}{96}\)
=\(\dfrac{127}{96}\)
Ta thấy tất cả các phân số đều có mẫu chung là 192
=> \(\frac{128+64+32+16+8+4+2}{192}\)
= \(\frac{254}{192}\)= \(\frac{127}{96}\)
\(C=\frac{2}{3}+\frac{2}{6}+\frac{2}{12}+\frac{2}{24}+\frac{2}{48}+\frac{2}{96}+\frac{2}{192}\)
\(2C=\frac{4}{3}+\frac{2}{3}+\frac{2}{6}+\frac{2}{12}+\frac{2}{24}+\frac{2}{48}+\frac{2}{96}\)
\(2C-C=\frac{4}{3}-\frac{2}{192}\)
\(C=\frac{127}{96}\)
\(C=\frac{2}{3}+\frac{2}{6}+\frac{2}{12}+\frac{2}{24}+\frac{2}{48}+\frac{2}{96}+\frac{2}{192}\)
\(C=\frac{2}{3}+\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}\)
\(C=\frac{254}{192}=\frac{127}{96}\)
\(C=\frac{2}{3}+\frac{2}{6}+\frac{2}{12}+\frac{2}{24}+\frac{2}{48}+\frac{2}{96}+\frac{2}{192}\)
\(C=\frac{2}{3}+\frac{2}{3.2}+\frac{2}{3.4}+\frac{2}{3.8}+\frac{2}{3.16}+\frac{2}{3.32}+\frac{2}{3.64}\)
\(C=1-\frac{2}{3}+\frac{2}{3}-\frac{2}{4}+\frac{2}{4}-\frac{2}{8}+...+\frac{2}{64}\)
\(C=1-\frac{2}{64}\)
\(C=\frac{31}{32}\)
Làm mò, không biết đúng không nữa?
1 và 9/16 hay 21/20
thế này thì chịu thôi khó lắmmmmm