Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(125^{100}.2^{160}\right):\left(5^{289}.4^{80}\right)\)\(=\frac{\left(5^3\right)^{100}.2^{100}}{5^{289}.\left(2^2\right)^{80}}\)\(=\frac{5^{300}.2^{100}}{5^{289}.2^{160}}\)\(=\frac{5^{11}}{2^{60}}\)
\(\left(9^8.5^8\right):\left(3^7.27^3.5^4\right)\)\(=\frac{\left(3^2\right)^8.5^8}{3^7.\left(3^3\right)^3.5^4}=\frac{3^{16}.5^4}{3^7.3^9}=\frac{3^{16}.5^4}{3^{16}}=5^4=625\)
\(\left(1024.27^8\right):\left(2^9.3^{23}\right)=\frac{2^{10}.\left(3^3\right)^8}{2^9.3^{23}}=\frac{2.3^{24}}{3^{23}}=2.3=6\)
\(\left(625.2^7+25^2.64\right):\left(2^6.5^4.3\right)=\frac{25^2.128+25^2.64}{2^6.\left(5^2\right)^2.3}=\frac{25^2.\left(128+64\right)}{64.25^2.3}=\frac{192}{192}=1\)
a) \(\frac{4^2.25^2+32,125}{2^3.5^2}=\frac{\left(4.25\right)^2+32,125}{8.25}=\frac{100^2+32,125}{200}=\frac{10000+32,125}{200}=\frac{10032,125}{200}=50,160625\)
b) \(\frac{4^5.9^4.2.6^9}{2^{10}.3^8+20}=\frac{2^{10}.3^8.2.2^9.3^9}{2^{10}.3^8+2^2.5}=\frac{2^{10}.3^9}{2^2.5}=\frac{20155392}{20}=1007769,6\)
Mình không chắc là đúng hay sai đâu nhé ! Nếu sai mong bạn thứ lỗi!
b) 3^2 . [(5^2 - 3 ) : 11 ] - 2^4 + 2.10^3
= 9 . [(25 - 3 ) : 11 ] - 16 + 2.1000
= 9 . [22 : 11 ] - 16 + 2000
= 9 . 2 - 16 + 2000
= 18 - 16 + 2000
= 2 + 2000
= 2002
(72005 + 72004) : 72004
= 72005 : 72004 + 72004 : 72004
= 72005 - 2004 + 1
= 71 + 1
= 7 + 1
= 8
a) ( 3^5 . 3^7 ) : 3^10 + 5.2^4 - 7^3 : 7
= 3^10 : 3^10 + 80 - 7^2
= 1 + 80 - 49
= 32
a) \(D=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}\)
\(\Rightarrow7D=1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{99}}\)
\(\Rightarrow7D-D=\left(1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{99}}\right)-\left(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}\right)\)
\(\Rightarrow6D=1-\frac{1}{7^{100}}\)
\(\Rightarrow D=\left(1-\frac{1}{7^{100}}\right).\frac{1}{6}\)
a) (2n - 1)7 = 510 : 53
=> (2n - 1)7 = 57
=> 2n - 1 = 5
=> 2n = 6
=> n = 6 : 2
=> n = 3
b) 5n + 2 . 53 = 254
5n + 2 . 53 = (52)4
=> 5n + 2 + 3 = 52.4
=> 5n + 5 = 58
=> n + 5 = 8
=> n = 8 - 5
=> n = 3
c) 9n + 1 . 3n + 2 = 319
=> (32)(n + 1) . 3n + 2 = 319
=> 32(n + 1) . 3n + 2 = 319
=> 32(n + 1) + n + 2 = 319
=> 2(n + 1) + n + 2 = 19
=> 2n + 2 + n + 2 = 19
=> 3n + 4 = 19
=> 3n = 15
=> n = 5
d) 25n + 2 : 5n + 1 = 1255
=> (52)(n + 2) : 5n + 1 = (53)5
=> 52.(n + 2) : 5n + 1 = 53 . 5
=> 52.(n + 2) - (n + 1) = 515
=> 2(n + 2) - (n + 1) = 15
=> 2n + 4 - n - 1 = 15
=> n + 3 = 15
=> n = 12
a. (2n - 1)7 = 510 : 53
<=> (2n - 1)7 = 57
<=> 2n - 1 = 5
<=> n = 3
b. 5n+2 . 53 = 254
<=> 5n.52 . 53 = (52)4
<=> 5n = 53
<=> n = 3
c. 9n+1 . 3n+2 = 319
<=> 9n.9 . 3n.32 = 319
<=> 32n.32 . 3n.32 = 319
<=> 33n = 315
<=> 3n = 15
<=> n = 5
Câu d và e hơi mâu thuẫn
\(\left(\frac{3}{7}+\frac{1}{2}\right)^2=\left(\frac{13}{14}\right)^2=\frac{169}{196}\)
\(\frac{5^4\cdot20^4}{25^5\cdot4^5}=\frac{5^4\cdot4^4\cdot5^4}{5^5\cdot5^5.4^5}=\frac{1}{100}\)
\(\left(\frac{3}{7}\right)^{21}:\left(\frac{9}{49}\right)^6=\left(\frac{3}{7}\right)^{21}:\left[\left(\frac{3}{7}\right)^2\right]^6=\left(\frac{3}{7}\right)^{21}:\left(\frac{3}{7}\right)^{12}=\left(\frac{3}{7}\right)^9\)
\(3-\left(-\frac{6}{7}\right)^0+\left(\frac{1}{2}\right)^2:2\)
\(=3-1+\frac{1}{4}:2=3-1+\frac{1}{8}=\frac{17}{8}\)
có ngay em ơi : 24 { [ (52 -52).209+74:73 ]+32 }
= 24.{ [ 0.209 + 7] + 9}
= 16.16
= 256