
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Đề bài là :
Chứng minh rằng : 21975 + 52010 \(⋮\)3 hả ?????
Viết lại đi

bài BĐT cuối làm r` mà ko nhớ ở đâu, bn vào đây tìm lại hộ mình Here nhân tiện ở đây cũng có 1 số bài BĐT+HPT+GPT hay lắm đấy chịu khó tìm nhé ko tìm dc bảo mình :v
mik nhác lém bn giải lun đc hk hoặc giải mấy bài khác cx đc =))

Ta có:
\(\left[x+\sqrt{\left(x+2010\right)}\right].\left[\sqrt{\left(x+2010\right)-x}\right]=2010\)
\(\Rightarrow\sqrt{\left(x-2010\right)-x}=\sqrt{\left(x+2010\right)+y}\left(1\right)\)
\(\Leftrightarrow\sqrt{\left(y+2010\right)-y}=\sqrt{\left(x+2010\right)+x}\left(2\right)\)
Công 2 vé lại với nhau, ta có:
\(\Rightarrow\sqrt{\left(x+2010\right)}+\sqrt{\left(y+2010\right)}-x-y=\sqrt{\left(x+2010\right)}+\sqrt{\left(y+2010\right)}+x+y\)
\(\Leftrightarrow2\left(x+y\right)=0\)
\(\Rightarrow x^3+y^3=0\)

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

Ta có:
x2 + 2y2 + z2 − 2xy − 2yz + xz − 3x − z + 5 = 0
<=>\(\left(x-\frac{2y+3}{2}\right)^2\) + \(\left(y-\frac{z+3}{2}\right)^2\)+ \(\frac{1}{2}\).( z - 1 )2=0
<=> \(\hept{\begin{cases}x=3\\y=2\\z=1\end{cases}}\)
Do đó: S= 33 + 27 + 12010 = 156
Ta có: \(2\equiv-1\left(mod3\right)\)
\(\Rightarrow2^{1975}\equiv-1\left(mod3\right)\)
Lại có: \(5^{2010}=\left(5^2\right)^{1005}=25^{1005}\)
Mà \(25\equiv1\left(mod3\right)\)
\(\Rightarrow25^{1005}\equiv1\left(mod3\right)\)
\(\Rightarrow2^{1975}+25^{1005}\equiv0\left(mod3\right)\)
Hay \(2^{1975}+5^{2010}\equiv0\left(mod3\right)\)
\(\Rightarrow2^{1975}+5^{2010}⋮3\left(đpcm\right)\)