K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2018

Đề bài là :

Chứng minh rằng : 21975 + 52010 \(⋮\)3 hả ?????

Viết lại đi

18 tháng 9 2018

bạn ý viết đúng rồi nhưng máy lỗi đó. mk cũng bị thế mà

18 tháng 3 2017

\(A=mn\left(m^2-n^2\right)\) (1)

\(A=mn\left(n-m\right)\left(n+m\right)\)(1)

1.- với A dạng (1) ta có (m^2 -n^2) luôn chia hết cho 3 { số chính phương luôn có dạng 3k hoặc 3k+1}

2.-Với A dạng (2)

2.1- nếu n hoặc m chẵn hiển nhiên A chia hết cho 2

2.1- nếu n và m lẻ thì (n+m) chia hết cho 2

Vậy: A chia hết cho 2&3 {2&3 ntố cùng nhau) => A chia hết cho 6 => dpcm

19 tháng 3 2017

mơn ạ yeu

21 tháng 10 2019

Ta có: \(2\equiv-1\left(mod3\right)\)

\(\Rightarrow2^{1975}\equiv-1\left(mod3\right)\)

Lại có: \(5^{2010}=\left(5^2\right)^{1005}=25^{1005}\)

Mà \(25\equiv1\left(mod3\right)\)

\(\Rightarrow25^{1005}\equiv1\left(mod3\right)\)

\(\Rightarrow2^{1975}+25^{1005}\equiv0\left(mod3\right)\)

Hay \(2^{1975}+5^{2010}\equiv0\left(mod3\right)\)

\(\Rightarrow2^{1975}+5^{2010}⋮3\left(đpcm\right)\)

30 tháng 6 2017

\(\sqrt{2011}< 2011\)

\(\Rightarrow2010\sqrt{2011}< 2010.2011< 2011^2\)

\(\Rightarrow\sqrt{2010\sqrt{2011}}< 2011\)

\(\Rightarrow\sqrt{2009\sqrt{2010\sqrt{2011}}}< \sqrt{2009.2011}< \sqrt{2010^2}=2010\)

.....................

\(\Rightarrow\sqrt{2\sqrt{3\sqrt{4......\sqrt{2011}}}}< 3\)

9 tháng 7 2018

ttr4rfe

21975=21974.2=(22)987.2=4987.2

4 đồng dư với 1(mod 3)

=>4987 đồng dư với 1(mod 3)

2 đồng dư với 2(mod 3)

=>21985 đồng dư với 2.1=2(mod 3)

5 đồng dư với 2(mod 3)

=>52010 đồng dư với 22010(mod 3)

22010=(22)1005=41005

4 đồng dư với 1(mod 3)

=>42010 đồng dư với 1(mod 3)

=>52010 đồng dư với 1(mod 3)

=>21975 + 52010 đồng dư với 3(mod 3)

=>21975 + 52010 chia hết cho 3

=>đpcm

22 tháng 11 2021

\(\dfrac{1}{\sqrt{k}+\sqrt{k+1}}=\dfrac{\sqrt{k}-\sqrt{k+1}}{k-k-1}=\sqrt{k+1}-\sqrt{k}\\ \Leftrightarrow\text{Đặt}\text{ }A=\dfrac{1}{3\left(\sqrt{2}+\sqrt{1}\right)}+\dfrac{1}{5\left(\sqrt{3}+\sqrt{2}\right)}+...+\dfrac{1}{4021\left(\sqrt{2011}+\sqrt{2010}\right)}< \dfrac{1}{2\left(\sqrt{2}+\sqrt{1}\right)}+\dfrac{1}{2\left(\sqrt{3}+\sqrt{2}\right)}+...+\dfrac{1}{2\left(\sqrt{2011}+\sqrt{2010}\right)}\\ \Leftrightarrow A< \dfrac{1}{2}\left(\dfrac{1}{\sqrt{2}+\sqrt{1}}+\dfrac{1}{\sqrt{3}+\sqrt{2}}+...+\dfrac{1}{\sqrt{2011}+\sqrt{2010}}\right)\)

\(\Leftrightarrow A< \dfrac{1}{2}\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{2011}-\sqrt{2010}\right)\\ \Leftrightarrow A< \dfrac{1}{2}\left(\sqrt{2011}-1\right)< \dfrac{1}{2}\cdot\dfrac{\sqrt{2011}-1}{\sqrt{2011}}=\dfrac{1}{2}\left(1-\dfrac{1}{\sqrt{2011}}\right)\)

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Lời giải:

a) Ta thấy: \(a+b-2\sqrt{ab}=(\sqrt{a}-\sqrt{b})^2\geq 0, \forall a,b>0\)

\(\Rightarrow a+b\geq 2\sqrt{ab}>0\Rightarrow \frac{1}{a+b}\le \frac{1}{2\sqrt{ab}}\).

Vì $a> b$ nên dấu bằng không xảy ra . Tức \(\frac{1}{a+b}< \frac{1}{2\sqrt{ab}}\)

Ta có đpcm

b)

Áp dụng kết quả phần a:

\(\frac{1}{3}=\frac{1}{1+2}< \frac{1}{2\sqrt{2.1}}\)

\(\frac{1}{5}=\frac{1}{3+2}< \frac{1}{2\sqrt{2.3}}\)

\(\frac{1}{7}=\frac{1}{4+3}< \frac{1}{2\sqrt{4.3}}\)

.....

\(\frac{1}{4021}=\frac{1}{2011+2010}< \frac{1}{2\sqrt{2011.2010}}\)

Do đó:

\(\frac{\sqrt{2}-\sqrt{1}}{3}+\frac{\sqrt{3}-\sqrt{2}}{5}+...+\frac{\sqrt{2011}-\sqrt{2010}}{4021}\)

\(< \frac{\sqrt{2}-\sqrt{1}}{2\sqrt{2.1}}+\frac{\sqrt{3}-\sqrt{2}}{2\sqrt{3.2}}+\frac{\sqrt{4}-\sqrt{3}}{2\sqrt{4.3}}+....+\frac{\sqrt{2011}-\sqrt{2010}}{2\sqrt{2011.2010}}\)

\(=\frac{1}{2}-\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{2}}-\frac{1}{2\sqrt{3}}+...+\frac{1}{2\sqrt{2010}}-\frac{1}{2\sqrt{2011}}\)

\(=\frac{1}{2}-\frac{1}{2\sqrt{2011}}< \frac{1}{2}\) (đpcm)