\(2^{0^{999999999999999999999999999^{7777777777777777777777777777777777^{33333333333333333333333...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2015

1                                     

6 tháng 9 2015

= 1              

11 tháng 8 2020

khó quá

11 tháng 8 2020

a. Vì \(\left|x-y-5\right|\ge0\forall x;y;2019\left|y-3\right|^{2020}\ge0\forall y\)

\(\Rightarrow\left|x-y-5\right|+2019\left|y-3\right|^{2020}\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}\left|x-y-5\right|=0\\2019\left|y-3\right|^{2020}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-y-5=0\\y-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-y=5\\y=3\end{cases}}\)

b. \(2\left(x-5\right)^4\ge0\forall x;5\left|2y-7\right|^5\ge0\forall y\)

\(\Rightarrow2\left(x-5\right)^4+5\left|2y-7\right|^5\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}2\left(x-5\right)^4=0\\5\left|2y-7\right|^5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-5=0\\2y-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\y=\frac{7}{2}\end{cases}}\)

12 tháng 2 2017

b) \(\left|x+2\right|+\left|y+5\right|=0\)

Ta có :

\(\left|x+2\right|\ge0\)

\(\left|y+5\right|\ge0\)

\(\Rightarrow\left|x+2\right|+\left|y+5\right|\ge0\)

Mà đề cho \(\left|x+2\right|+\left|y+5\right|=0\)

\(\Rightarrow\hept{\begin{cases}\left|x+2\right|=0\\\left|y+5\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x+2=0\\y+5=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-2\\y=-5\end{cases}}}\)

12 tháng 2 2017

(x + 2)(y - 3) = 5 = 1.5 = 5.1 = (-1).(-5) = (-5).(-1)

Xét 4 trường hợp , ta có :

\(\left(1\right)\hept{\begin{cases}x+2=1\\y-3=5\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=8\end{cases}}}\)

\(\left(2\right)\hept{\begin{cases}x+2=5\\y-3=1\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\y=4\end{cases}}\)

\(\left(3\right)\hept{\begin{cases}x+2=-1\\y-3=-5\end{cases}}\Rightarrow\hept{\begin{cases}x=-3\\y=-2\end{cases}}\)

\(\left(4\right)\hept{\begin{cases}x+2=-5\\y-3=-1\end{cases}}\Rightarrow\hept{\begin{cases}x=-7\\y=2\end{cases}}\)

12 tháng 2 2017

a) \(\left(x+2\right)\left(y-3\right)=5\)

Ta có bảng sau:

x + 2 1 5 -1 -5
y - 3 5 1 -5 -1
x -1 3 -3 -7
y 8 4 -2 2

Vậy cặp số \(\left(x;y\right)\)\(\left(-1;8\right);\left(3;4\right);\left(-3;-2\right);\left(-7;2\right)\)

b) \(\left|x+2\right|+\left|y+5\right|=0\)

\(\Rightarrow\left[\begin{matrix}\left|x+2\right|=0\\\left|y+5\right|=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x+2=0\\y+5=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=-2\\y=-5\end{matrix}\right.\)

Vậy \(x=-2;y=-5\)

c) tương tự b

d) sai đề

12 tháng 2 2017

d)x\(\in\varnothing\)

26 tháng 6 2017

Em không hiểu anh viết gì hết.lolanglolanglolang

26 tháng 6 2017

khỏi hỉu

16 tháng 7 2017

a, \(x^2-9=0\Rightarrow x^2=9\Rightarrow x\pm3\)

b, \(\left(x-3\right)^2-25=0\Rightarrow\left(x-3\right)^2=25\)

\(\Rightarrow\left\{{}\begin{matrix}x-3=5\\x-3=-5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)

c, \(\left(x-3\right)\left(2x-5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-3=0\\2x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\2x=5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{5}{2}\end{matrix}\right.\)

d, \(\left(x-3\right)x-2\left(x-3\right)=0\)

\(\Rightarrow\left(x-3\right)\left(x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)

e, \(3x\left(x-1\right)-5\left(1-x\right)=0\)

\(\Rightarrow3x\left(x-1\right)+5\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(3x+5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\3x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{5}{3}\end{matrix}\right.\)

g, \(x^2+6x-7=0\)

\(\Rightarrow x^2-x+7x-7=0\)

\(\Rightarrow x.\left(x-1\right)+7.\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x+7\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\)

h,\(2x^2+5x-7=0\)

\(\Rightarrow2x^2-2x+7x-7=0\)

\(\Rightarrow2x.\left(x-1\right)+7.\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(2x+7\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\2x+7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{7}{2}\end{matrix}\right.\)

Chúc bạn học tốt!!!

16 tháng 7 2017

a) \(x^2-9=0\Leftrightarrow x^2=9\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\) vậy \(x=3;x=-3\)

b) \(\left(x-3\right)^2-25=0\Leftrightarrow\left(x-3\right)^2=25\Leftrightarrow\left\{{}\begin{matrix}x-3=5\\x-3=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)

vậy \(x=8;x=-2\)

c) \(\left(x-3\right)\left(2x-5\right)=0\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\2x-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=\dfrac{5}{2}\end{matrix}\right.\)

vậy \(x=3;x=\dfrac{5}{2}\)

d)\(\left(x-3\right).x-2\left(x-3\right)=0\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=3\end{matrix}\right.\) vậy \(x=2;x=3\)

e) \(3x\left(x-1\right)-5\left(1-x\right)=0\Leftrightarrow\left(3x+5\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x+5=0\\x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-5}{3}\\x=1\end{matrix}\right.\) vậy \(x=\dfrac{-5}{3};x=1\)

câu e t thấy sai sai nhưng vẫn làm ; bn coi lại đề nha

g) \(x^2+6x-7=0\Leftrightarrow x^2-x+7x-7=0\)

\(\Leftrightarrow x\left(x-1\right)+7\left(x-1\right)=0\Leftrightarrow\left(x+7\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-7\\x=1\end{matrix}\right.\) vậy \(x=-7;x=1\)

h) \(2x^2+5x-7=0\Leftrightarrow2x^2-2x+7x-7=0\)

\(\Leftrightarrow2x\left(x-1\right)+7\left(x-1\right)=0\Leftrightarrow\left(2x+7\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+7=0\\x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-7}{2}\\x=1\end{matrix}\right.\) vậy \(x=\dfrac{-7}{2};x=1\)

18 tháng 1 2018

a) \(\left(x^2-5\right)\left(x^2-25\right)< 0\)

\(x^2-5>x^2-25\) nên \(\left\{{}\begin{matrix}x^2-5>0\\x^2-25< 0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2>5\\x^2< 25\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{5}< x< -\sqrt{5}\left(vl\right)\\-5< x< 5\end{matrix}\right.\)

b) \(\left(x+5\right)\left(9+x^2\right)< 0\)

\(9+x^2>0\) nên \(x+5< 0\Leftrightarrow x< -5\)

c) \(\left(x+3\right)\left(x^2+1\right)=0\)

\(x^2+1>0\) nên \(x+3=0\Leftrightarrow x=-3\)

d) \(\left(x+5\right)\left(x^2-4\right)=0\)

\(\Rightarrow\left(x+5\right)\left(x+2\right)\left(x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=-2\\x=2\end{matrix}\right.\)

24 tháng 9 2016

\(S=1+5+5^2+...+5^{200}\)

\(\Rightarrow5S=5+5^2+5^3+..+5^{201}\)

\(\Rightarrow5S-S=\left(5+5^2+5^3+...+5^{201}\right)-\left(1+5+5^2+...+5^{200}\right)\)

\(\Rightarrow4S=5^{201}-1\)

\(\Rightarrow S=\frac{5^{201}-1}{4}\)

11 tháng 1 2018

a)
\(\left|x\right|-2\left|x\right|+3\left|x\right|=16+6\left|x\right|-19\)
\(\left|x\right|-2\left|x\right|+3\left|x\right|-6\left|x\right|=16-19\)
\(\left|x\right|.\left(1-2+3-6\right)=-3\)
\(\left|x\right|.\left(-4\right)=-3\)
\(\left|x\right|=\dfrac{3}{4}\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{3}{4}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{3}{4}\end{matrix}\right.\)



b,
2.(|x| - 5) - 15 = 9
\(2.\left(\left|x\right|-5\right)=9+15\)
\(2.\left(\left|x\right|-5\right)=24\)
\(\left|x\right|-5=24:2\)
\(\left|x\right|-5=12\)
\(\left|x\right|=12+5\)
\(\left|x\right|=17\)
\(\Rightarrow\left[{}\begin{matrix}x=-17\\x=17\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-17\\x=17\end{matrix}\right.\)

c,
|8 - 2x| + |4y - 16| = 0
\(\Rightarrow\left\{{}\begin{matrix}\left|8-2x\right|=0\\\left|4y-16\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}8-2x=0\\4y-16=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x=8\\4y=16\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\)


d,

|x - 14| + |2y - x| = 0
\(\Rightarrow\left\{{}\begin{matrix}\left|x-14\right|=0\\\left|2y-x\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-14=0\\2y-x=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=14\\2y=x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=14\\2y=14\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=14\\y=7\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=14\\y=7\end{matrix}\right.\)

2.Tìm x, y, z biết

a,
2.|3x| + |y + 3| + |z - y| = 0
\(\Rightarrow\left\{{}\begin{matrix}2.\left|3x\right|=0\\\left|y+3\right|=0\\\left|z-y\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left|3x\right|=0\\y+3=0\\z-y=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3x=0\\y=-3\\z=y\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=0\\y=-3\\z=-3\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=0\\y=-3\\z=-3\end{matrix}\right.\)

b, (x - 3y)2 + | y + 4|= 0
\(\Rightarrow\left\{{}\begin{matrix}\left(x-3y\right)2=0\\\left|y+4\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-3y=0\\y+4=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3y\\y=-4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.\left(-4\right)\\y=-4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\)