K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2017

a) \(\left(x+2\right)\left(y-3\right)=5\)

Ta có bảng sau:

x + 2 1 5 -1 -5
y - 3 5 1 -5 -1
x -1 3 -3 -7
y 8 4 -2 2

Vậy cặp số \(\left(x;y\right)\)\(\left(-1;8\right);\left(3;4\right);\left(-3;-2\right);\left(-7;2\right)\)

b) \(\left|x+2\right|+\left|y+5\right|=0\)

\(\Rightarrow\left[\begin{matrix}\left|x+2\right|=0\\\left|y+5\right|=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x+2=0\\y+5=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=-2\\y=-5\end{matrix}\right.\)

Vậy \(x=-2;y=-5\)

c) tương tự b

d) sai đề

12 tháng 2 2017

d)x\(\in\varnothing\)

AH
Akai Haruma
Giáo viên
15 tháng 1 2023

Lời giải:

1. Ta thấy: 
$(1-x)^2\geq 0; (3-y)^2\geq 0; (y^2-x-z)^2\geq 0$ với mọi $x,y,z$

Do đó để tổng của chúng bằng $0$ thì $(1-x)^2=(3-y)^2=(y^2-x-z)^2=0$

$\Rightarrow x=1; y=3; z=y^2-x=3^2-1=8$

2.

Bạn xem có viết lộn dấu bình phương ở cụm ( ) thứ nhất vào bên trong không vậy>

14 tháng 8 2019

a, th1 : 2- x +2=x

<=> X=2

Th2: -2 +x +2= x

<=> X có vô sốnghiệm

14 tháng 8 2019

B1: a, |2 - x| + 2 = x

=> |2 - x| = x - 2

Dễ thấy (2 - x) và số đối của (x - 2)

=> |2 - x| = x - 2

=> 2 - x ≤ 0

=> x  ≥ 2

b, Điều kiện: x + 7 ≥ 0 => x  ≥ -7

Ta có: |x - 9| = x + 7

\(\Rightarrow\orbr{\begin{cases}x-9=x+7\\x-9=-x-7\end{cases}\Rightarrow}\orbr{\begin{cases}0x=16\left(loai\right)\\2x=2\end{cases}\Rightarrow x=1}\left(t/m\right)\)

28 tháng 7 2016

\(\left(x-1\right)^2+\left(3x-y-3\right)^2+\left(y+z\right)^4=0\)

\(\left(x-1\right)^2\ge0\)

\(\left(3x-y-3\right)^2\ge0\)

\(\left(y+z\right)^4\ge0\)

\(\left(x-1\right)^2+\left(3x-y-3\right)^2+\left(y+z\right)^4=0\)

\(\Leftrightarrow\left(x-1\right)^2=0;\left(3x-y-3\right)^2=0;\left(y+z\right)^4=0\)

  • \(x-1=0\Rightarrow x=1\)
  • \(3x-3-y=0\Rightarrow3\times1-3=y\Rightarrow y=0\)
  • \(y+z=0\Rightarrow0+z=0\Rightarrow z=0\)

Vậy \(x=1;y=0;z=0\)

Chúc bạn học tốt ^^

3 tháng 2 2018

Ta thấy \(\left(x+y-z\right)^2\ge0\)\(\left(x-y+2\right)^2\ge0\);\(\left(x+4\right)^2\ge0\)với mọi x,y,z

Suy ra \(\left(x+y-z\right)^2+\left(x-y+2\right)^2+\left(x+4\right)^2\ge0\)với mọi x,y,z

Mặt khác \(\left(x+y-z\right)^2+\left(x-y+2\right)^2+\left(x+4\right)^2=0\)

Nên \(\hept{\begin{cases}x+y-z=0\\x-y+2=0\\x+4=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=z\\x+2=y\\x=-4\end{cases}\Rightarrow}\hept{\begin{cases}x+y=z\\y=-2\\x=-4\end{cases}\Rightarrow}\hept{\begin{cases}z=-6\\y=-2\\x=-4\end{cases}}}\)

Vậy.....

15 tháng 6 2018

a) \(\left|3x-\frac{1}{2}\right|+\left|\frac{1}{2}y+\frac{3}{5}\right|=0\)

\(\Rightarrow\left|3x-\frac{1}{2}\right|=0\)                                \(\Rightarrow\left|\frac{1}{2}y+\frac{3}{5}\right|=0\)

\(\Rightarrow3x-\frac{1}{2}=0\)                                      \(\Rightarrow\frac{1}{2}y+\frac{3}{5}=0\)

\(3x=\frac{1}{2}\)                                                          \(\frac{1}{2}y=\frac{-3}{5}\)

\(x=\frac{1}{2}:3\)                                                             \(y=\left(\frac{-3}{5}\right):\frac{1}{2}\)

\(x=\frac{1}{6}\)                                                                  \(y=\frac{-6}{5}\)

KL: x = 1/6; y = -6/5

b) \(\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|\le0\)

mà \(\left|\frac{3}{2}x+\frac{1}{9}\right|>0;\left|\frac{1}{5}y-\frac{1}{2}\right|>0\)

\(\Rightarrow\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|>0\)

=> trường hợp |3/2x +1/9| + |1/5y -1/2| < 0 không thế xảy ra

\(\Rightarrow\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|=0\)

rùi bn lm tương tự như phần a nhé!

18 tháng 3 2017

Ta có :  \(\left(x-y^2+z\right)^2+\left(y-2\right)^2+\left(z+3\right)^2=0\)

mà \(\hept{\begin{cases}\left(x-y^2+z\right)^2\ge0\\\left(y-2\right)^2\ge0\\\left(z+3\right)^2\ge0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\left(x-y^2+z\right)^2=0\\\left(y-2\right)^2=0\\\left(z+3\right)^2=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x-y^2+z=0\\y-2=0\\z+3=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=y^2-z=2^2-\left(-3\right)=7\\y=2\\z=-3\end{cases}}\)

18 tháng 3 2017

\(\left(x-y^2+z\right)^2+\left(y-2\right)^2+\left(z+3\right)^2=0\)

Do \(\hept{\begin{cases}\left(x-y^2+z\right)^2\ge0\\\left(y-2\right)^2\ge0\\\left(z+3\right)^2\ge0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-y^2+z\right)^2=0\\\left(y-2\right)^2=0\\\left(z+3\right)^2=0\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-y^2+z\right)^2=0\\y=2\\z=-3\end{cases}\Leftrightarrow\hept{\begin{cases}\left[x-2^2+\left(-3\right)\right]^2=0\\y=2\\z=-3\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\y=2\\z=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\\z=-3\end{cases}}}\)

Vậy ...