Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) \(\left(2x-3\right).\left(6-2x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=0\\6-2x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=3\\2x=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=3\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{3}{2};3\right\}\)
e) \(2\left|\frac{1}{2}x-\frac{1}{3}\right|-\frac{3}{2}=\frac{1}{4}\)
\(\Leftrightarrow2\left|\frac{1}{2}x-\frac{1}{3}\right|=\frac{1}{4}+\frac{3}{2}=\frac{7}{4}\)
\(\Leftrightarrow\left|\frac{1}{2}x-\frac{1}{3}\right|=\frac{7}{4}:2=\frac{7}{4}.\frac{1}{2}=\frac{7}{8}\)
\(\Rightarrow\left[{}\begin{matrix}\frac{1}{2}x-\frac{1}{3}=\frac{7}{8}\\\frac{1}{2}x-\frac{1}{3}=\left(-\frac{7}{8}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{29}{12}\\x=\frac{-13}{12}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{29}{12};\frac{-13}{12}\right\}\)
Mấy bài này ko quá khó, tải MathPhoto trong đt về nó tự lm
a)\(\frac{5}{6}-x=-\frac{7}{12}+\frac{2}{3}\)
\(\frac{5}{6}-x=\frac{1}{12}\)
\(x=\frac{5}{6}-\frac{1}{12}\)
\(\Rightarrow x=\frac{3}{4}\)
b)\(\left(2,4x-36\right):1\frac{5}{7}=-14\)
\(\left(2,4x-36\right)=-24\)
\(2,4x=12\)
\(\Rightarrow x=5\)
c)\(\left(3\frac{1}{2}+2x\right).3\frac{2}{3}=5\frac{1}{3}\)
\(3\frac{1}{2}+2x=\frac{16}{11}\)
\(2x=-\frac{45}{22}\)
\(x=-\frac{45}{44}\)
d)\(\frac{5}{6}-\left|\frac{1}{2}x-\frac{1}{3}\right|=\frac{3}{8}\)
\(\left|\frac{1}{2}x-\frac{1}{3}\right|=\frac{11}{24}\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{2}x-\frac{1}{3}=\frac{11}{24}\\\frac{1}{2}x-\frac{1}{3}=-\frac{11}{24}\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{19}{12}\\x=-\frac{1}{4}\end{cases}}\)
e)\(\left|\frac{1}{4}-2x\right|-\frac{3}{4}=0\)
\(\left|\frac{1}{4}-2x\right|=\frac{3}{4}\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{4}-2x=\frac{3}{4}\\\frac{1}{4}-2x=-\frac{3}{4}\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{1}{4}\\x=\frac{1}{2}\end{cases}}\)
tìm x,y,z thuộc Q biết
\(\left|x+\frac{3}{4}\right|+\left|y-\frac{1}{5}\right|+\left|x+y+z\right|=0\)
Xét đẳng thức , ta thấy :
\(\left|x+\frac{3}{4}\right|\ge0\)
\(\left|y-\frac{1}{5}\right|\ge0\)
\(\left|x+y+z\right|\ge0\)
=> \(\left|x+\frac{3}{4}\right|+\left|y-\frac{1}{5}\right|+\left|x+y+z\right|\ge0\)
Mà \(\left|x+\frac{3}{4}\right|+\left|y-\frac{1}{5}\right|+\left|x+y+z\right|=0\) (đề bài)
=> \(\hept{\begin{cases}\left|x+\frac{3}{4}\right|=0\\\left|y-\frac{1}{5}\right|=0\\\left|x+y+z\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{4}\\y=\frac{1}{5}\\z=-\left(-\frac{3}{4}+\frac{1}{5}\right)=\frac{11}{20}\end{cases}}\)
Bài 1:
\(a,22\frac{1}{2}.\frac{7}{9}+50\%-1,25\)
=\(\frac{45}{2}.\frac{7}{9}+\frac{1}{2}-\frac{5}{4}\)
=\(\frac{35}{2}+\frac{1}{2}-\frac{5}{4}\)
=\(\frac{70}{4}+\frac{2}{4}-\frac{5}{4}\)
=\(\frac{67}{4}\)
\(b,1,4.\frac{15}{49}-\left(\frac{4}{5}+\frac{2}{3}\right):2\frac{1}{5}\)
=\(\frac{7}{5}.\frac{15}{49}-\left(\frac{12}{15}+\frac{10}{15}\right):\frac{11}{5}\)
=\(\frac{3}{7}-\frac{22}{15}.\frac{5}{11}\)
=\(\frac{3}{7}-\frac{2}{3}\)
=\(-\frac{5}{21}\)
\(c,125\%.\left(-\frac{1}{2}\right)^2:\left(1\frac{5}{6}-1,6\right)+2016^0\)
=\(\frac{5}{4}.\frac{1}{4}:\left(\frac{11}{6}-\frac{8}{5}\right)+1\)
=\(\frac{5}{16}:\frac{7}{30}+1\)
=\(\frac{131}{56}\)
\(d,1,4.\frac{15}{49}-\left(20\%+\frac{2}{3}\right):2\frac{1}{5}\)
=\(\frac{7}{5}.\frac{15}{49}-\left(\frac{1}{5}+\frac{2}{3}\right):\frac{11}{5}\)
=\(\frac{3}{7}-\frac{13}{15}:\frac{11}{5}\)
=\(\frac{3}{7}-\frac{13}{33}\)
=\(\frac{8}{231}\)
Bài đ làm giống hệt như bài c
Bài 2 :
\(a,\left|\frac{3}{4}.x-\frac{1}{2}\right|=\frac{1}{4}\)
=>\(\left[{}\begin{matrix}\frac{3}{4}.x-\frac{1}{2}=\frac{1}{4}\\\frac{3}{4}.x-\frac{1}{2}=-\frac{1}{4}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}\frac{3}{4}.x=\frac{1}{4}+\frac{1}{2}=\frac{3}{4}\\\frac{3}{4}.x=-\frac{1}{4}+\frac{1}{2}=\frac{1}{4}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\frac{3}{4}:\frac{3}{4}=1\\x=\frac{1}{4}:\frac{3}{4}=\frac{1}{3}\end{matrix}\right.\)
Vậy x ∈{1;\(\frac{1}{3}\)}
\(b,\frac{5}{3}.x-\frac{2}{5}.x=\frac{19}{10}\)
=>\(\frac{19}{15}.x=\frac{19}{10}\)
=>\(x=\frac{19}{10}:\frac{19}{15}=\frac{3}{2}\)
Vậy x ∈ {\(\frac{3}{2}\)}
c,\(\left|2.x-\frac{1}{3}\right|=\frac{2}{9}\)
=>\(\left[{}\begin{matrix}2.x-\frac{1}{3}=\frac{2}{9}\\2.x-\frac{1}{3}=-\frac{2}{9}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}2.x=\frac{2}{9}+\frac{1}{3}=\frac{5}{9}\\2.x=-\frac{2}{9}+\frac{1}{3}=\frac{1}{9}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\frac{5}{9}:2=\frac{5}{18}\\x=\frac{1}{9}:2=\frac{1}{18}\end{matrix}\right.\)
Vậy x∈{\(\frac{5}{18};\frac{1}{18}\)}
\(d,x-30\%.x=-1\frac{1}{5}\)
=\(70\%x=-\frac{6}{5}\)
=\(\frac{7}{10}.x=-\frac{6}{5}\)
=>\(x=-\frac{6}{5}:\frac{7}{10}=-\frac{12}{7}\)
Vậy x∈{\(-\frac{12}{7}\)}
Bài 2
a/
\(\Rightarrow\left[{}\begin{matrix}\frac{3}{4}.x-\frac{1}{2}=\frac{1}{4}\\\frac{3}{4}.x-\frac{1}{2}=-\frac{1}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{3}{4}.x=\frac{1}{4}+\frac{1}{2}\\\frac{3}{4}.x=-\frac{1}{4}+\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{3}{4}.x=\frac{3}{4}\\\frac{3}{4}.x=\frac{1}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{3}{4}:\frac{3}{4}\\x=\frac{1}{4}:\frac{3}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy \(x=1\) hoặc \(x=\frac{1}{3}\)
b/ Đặt x làm thừa số chung rồi tính như bình thường
c/ Tương tự câu a
d/ Tương tự câu b
a) \(\frac{-2}{5}+\frac{5}{6}.x=\frac{-4}{15}\)
\(\frac{5}{6}.x=\frac{-4}{15}-\frac{-2}{5}\)
\(\frac{5}{6}.x=\frac{2}{15}\)
\(x=\frac{2}{15}:\frac{5}{6}\)
\(x=\frac{4}{25}\)
b) \(\left(x-\frac{1}{5}\right)\left(y+\frac{1}{2}\right)\left(z-3\right)=0\)
\(x-\frac{1}{5}=0\)
\(x=0+\frac{1}{5}\)
\(x=\frac{1}{5}\)