K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2020

tính?

đ/s: 18188/9

học tốt^

10 tháng 11 2020

\(2021-\frac{1}{3}.3\)\(=2021-1=2020\)

\(\text{Học tốt!!!}\)

18 tháng 10 2020

Ta có \(\frac{a}{a^2}=\frac{a^2}{a^3}=...=\frac{a^{2020}}{a^{2021}}=\frac{a+a^2+....+a^{2020}}{a^2+a^3+...+a^{2021}}\)

=> \(\frac{a}{a^2}=\frac{a+a^2+...+a^{2020}}{a^2+a^3+...+a^{2021}}\)

=> \(\left(\frac{a}{a^2}\right)^{2020}=\left(\frac{a+a^2+...+a^{2020}}{a^2+a^3+...+a^{2021}}\right)^{2020}\)

=> \(\frac{a}{a^2}.\frac{a}{a^2}...\frac{a}{a^2}=\left(\frac{a+a^2+...+a^{2020}}{a^2+a^3+...+a^{2021}}\right)^{2020}\)(2020 thừa số \(\frac{a}{a^2}\))

=> \(\frac{a}{a^2}.\frac{a^2}{a^3}...\frac{a^{2020}}{a^{2021}}=\left(\frac{a+a^2+...+a^{2020}}{a^2+a^3+...+a^{2021}}\right)^{2020}\)(Vì \(\frac{a}{a^2}=\frac{a^2}{a^3}=...=\frac{a^{2020}}{a^{2021}}\))

=> \(\frac{a}{a^{2021}}=\left(\frac{a+a^2+...+a^{2020}}{a^2+a^3+...+a^{2021}}\right)^{2020}\)(đpcm)

Ko sai bạn ey

12 tháng 1 2022

{ x + y + z = 1 (1)

{ x² + y² + z² = 1 (2)

{ x³ + y³ + z³ = 1 (3)

(x + y + z)² = x² + y² + z² + 2(xy + yz + zx) 

⇒ 2(xy + yz + zx) = (x + y + z)² - (x² + y² + z²) = 1² - 1 = 0 ⇒ xy + yz + zx = 0

(x + y + z)³ = x³ + y³ + z³ + 3(x + y)(y + z)(z + x) 

⇒ 3(x + y)(y + z)(z + x) = (x + y + z)³ - (x³ + y³ + z³) = 1³ - 1 = 0

⇒ x + y = 0 hoặc y + z = 0 hoặc z + x = 0

@ Nếu  x + y = 0 ⇔ x = - y thay vào (1) ⇒ z = 1 , thay vào (2) ⇒ 2x² + 1 = 1 ⇒ x = 0; y = 0

⇒ S = 1

Tương tự cho trường hợp y + z = 0 và z + x = 0

24 tháng 8 2021

\(B=\dfrac{\dfrac{1}{2020}+\dfrac{1}{2021}-\dfrac{1}{2022}}{\dfrac{3}{2020}+\dfrac{3}{2021}-\dfrac{3}{2022}}-1=\dfrac{\dfrac{1}{2020}+\dfrac{1}{2021}-\dfrac{1}{2022}}{3\left(\dfrac{1}{2020}+\dfrac{1}{2021}-\dfrac{1}{2022}\right)}-1=\dfrac{1}{3}-1=-\dfrac{2}{3}\)

24 tháng 8 2021

\(B=\dfrac{\dfrac{1}{2021}+\dfrac{1}{2021}-\dfrac{1}{2022}}{\dfrac{3}{2020}+\dfrac{3}{2021}-\dfrac{3}{2022}}-1=\dfrac{\dfrac{1}{2021}+\dfrac{1}{2021}-\dfrac{1}{2022}}{3\left(\dfrac{1}{2020}+\dfrac{1}{2021}-\dfrac{1}{2022}\right)}-1=\dfrac{1}{3}-1=\dfrac{1}{3}-\dfrac{3}{3}=-\dfrac{2}{3}\)

12 tháng 1 2022

\(x^2+y^2+z^2=1\Rightarrow x^2,y^2,z^2\le1\Rightarrow-1\le x,y,z\le1\)

Ta có:\(x^3+y^3+z^3-x^2-y^2-z^2=0\)

\(\Rightarrow x^2\left(x-1\right)+y^2\left(y-1\right)+z^2\left(z-1\right)=0\)

Vì \(x-1\le0,y-1\le0,z-1\le0\)

\(\Rightarrow x^2\left(x-1\right)\text{​​}\le0,y^2\left(y-1\right)\le0,z^2\left(z-1\right)\le0\)

\(\Rightarrow x^2\left(x-1\right)\text{​​}+y^2\left(y-1\right)+z^2\left(z-1\right)\le0\)

Dấu "=" xảy ra khi\(\left\{{}\begin{matrix}x^2\left(x-1\right)=0\\y^2\left(y-1\right)=0\\z^2\left(z-1\right)=0\end{matrix}\right.\)

\(\Rightarrow\left(x,y,z\right)\) là bộ (0,0,1) và các hoán vị

\(\Rightarrow x^{2021}+y^{2021}+z^{2021}=1\)

18 tháng 3 2022

có ai biết làm ko

 

24 tháng 7 2018

Giả sử trong 2021 số nguyên dương đã cho không có số nào bằng nhau.

Và a1 < a2 < a3 < ... < a2021 . Ta có :

\(\dfrac{1}{a_1}+\dfrac{1}{a_2}+...+\dfrac{1}{a_{2021}}\le\dfrac{1}{1}+\dfrac{1}{2}+...+\dfrac{1}{2021}\)

\(\Rightarrow\dfrac{1}{a_1}+\dfrac{1}{a_2}+...+\dfrac{1}{a_{2021}}< \dfrac{1}{1}+\dfrac{1}{2}+...+\dfrac{1}{2}=1+1010=1011\)

(mâu thuẫn)

⇒Điều giả sử sai. ⇒ Ít nhất 2 trong số 2021 số nguyên dương đã cho bằng nhau.

30 tháng 10 2023

S = 1/3 + 1/3² + 1/3³ + ... + 1/3²⁰²¹ + 1/3²⁰²²

⇒ S/3 = 1/3² + 1/3³ + 1/3⁴ + ... + 1/3²⁰²² + 1/3²⁰²³

⇒ 2S/3 = S - S/3

= (1/3 + 1/3² + 1/3³ + ... + 1/3²⁰²¹ + 1/3²⁰²²) - (1/3² +1/3³ + 1/3⁴ + ... + 1/3²⁰²² + 1/3²⁰²³)

= 1/3 - 1/3²⁰²³

⇒ S = (1/3 - 1/3²⁰²³) : 2/3

= (1 - 1/3²⁰²²) : 2

Lại có: 1 - 1/3²⁰²² < 1

⇒ S < 1/2