\(\sqrt{2015x-2014}\) + \(\sqrt{2016x-2015}\) = 2016

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2017

\(2015\sqrt{2015x-2014} + \sqrt{2016x-2015} = 2016\)

\(pt\Leftrightarrow 2015\sqrt{2015x-2014}-2015+\sqrt{2016x-2015}-1=0\)

\(\Leftrightarrow 2015(\sqrt{2015x-2014}-1)+(\sqrt{2016x-2015}-1)=0\)

\(\Leftrightarrow \frac{2015^2(x-1)}{\sqrt{2015x-2014}+1}+\frac{2016(x-1)}{\sqrt{2016-2015}+1}=0\)

\(\Leftrightarrow (x-1)(\frac{2015^2}{\sqrt{2015x-2014}+1}+\frac{2016}{\sqrt{2016x-2015}+1})=0\)

Dễ thấy: \(\frac{2015^2}{\sqrt{2015x-2014}+1}+\frac{2016}{\sqrt{2016x-2015}+1}=0\) vô nghiệm nên

\(x-1=0\Rightarrow x=1\)

29 tháng 3 2017

dệ mà m :v bình phương đi :v

23 tháng 9 2017

\(2015\sqrt{2015x-2014}+\sqrt{2016x-2015}=2016\)

ĐK:\(x\ge\frac{2015}{2016}\)

\(\Leftrightarrow2015\left(\sqrt{2015x-2014}-1\right)+\sqrt{2016x-2015}-1=0\)

\(\Leftrightarrow2015\frac{2015x-2014-1}{\sqrt{2015x-2014}+1}+\frac{2016x-2015-1}{\sqrt{2016x-2015}+1}=0\)

\(\Leftrightarrow2015\frac{2015x-2015}{\sqrt{2015x-2014}+1}+\frac{2016x-2016}{\sqrt{2016x-2015}+1}=0\)

\(\Leftrightarrow2015\frac{2015\left(x-1\right)}{\sqrt{2015x-2014}+1}+\frac{2016\left(x-1\right)}{\sqrt{2016x-2015}+1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{2015^2}{\sqrt{2015x-2014}+1}+\frac{2016}{\sqrt{2016x-2015}+1}\right)=0\)

Dễ thấy: \(\frac{2015^2}{\sqrt{2015x-2014}+1}+\frac{2016}{\sqrt{2016x-2015}+1}>0\)

\(\Rightarrow x-1=0\Rightarrow x=1\)

tui ko bít bạn học lớp mí

7 tháng 4 2018

lớp999999

4 tháng 7 2015

cam on cau nhieu de minh xem lai cau 1

19 tháng 10 2015

\(\sqrt{2016}+\sqrt{2015}>\sqrt{2015}+\sqrt{2014}\)

=> \(\frac{1}{\sqrt{2016}+\sqrt{2015}}<\frac{1}{\sqrt{2015}+\sqrt{2014}}\)

=> \(\frac{\sqrt{2016}-\sqrt{2015}}{\left(\sqrt{2016}-\sqrt{2015}\right)\left(\sqrt{2016}+\sqrt{2015}\right)}<\frac{\sqrt{2015}-\sqrt{2014}}{\left(\sqrt{2015}-\sqrt{2014}\right)\left(\sqrt{2015}+\sqrt{2014}\right)}\)

=> \(\sqrt{2016}-\sqrt{2015}<\sqrt{2015}-\sqrt{2014}\)

30 tháng 8 2015

A = \(\frac{2016-2015}{\sqrt{2016}+\sqrt{2015}}=\frac{1}{\sqrt{2016}+\sqrt{2015}}\); B = \(\frac{2015-2014}{\sqrt{2015}+\sqrt{2014}}=\frac{1}{\sqrt{2015}+\sqrt{2014}}\)

Mà \(\sqrt{2016}+\sqrt{2015}>\sqrt{2015}+\sqrt{2014}\) ( Vì \(\sqrt{2016}>\sqrt{2014}\))

Nên \(\frac{1}{\sqrt{2016}+\sqrt{2015}}<\frac{1}{\sqrt{2015}+\sqrt{2014}}\) => A < B

AH
Akai Haruma
Giáo viên
8 tháng 9 2019

Lời giải:

Ta có:
\(A-B=(\sqrt{2016}-\sqrt{2014})+(\sqrt{2017}-\sqrt{2015})+(\sqrt{2018}-\sqrt{2022})\)

\(=\frac{2}{\sqrt{2016}+\sqrt{2014}}+\frac{2}{\sqrt{2017}+\sqrt{2015}}-\frac{4}{\sqrt{2018}+\sqrt{2022}}\)

Dễ thấy:

\(0< \sqrt{2016}+\sqrt{2014}< \sqrt{2018}+\sqrt{2022}; 0< \sqrt{2017}+\sqrt{2015}< \sqrt{2018}+\sqrt{2022}\)

\(\Rightarrow \frac{1}{\sqrt{2016}+\sqrt{2014}}>\frac{1}{\sqrt{2018}+\sqrt{2022}};\frac{1}{\sqrt{2017}+\sqrt{2015}}>\frac{1}{\sqrt{2018}+\sqrt{2022}}\)

\(\Rightarrow A-B=2\left(\frac{1}{\sqrt{2016}+\sqrt{2014}}-\frac{1}{\sqrt{2018}+\sqrt{2022}}+\frac{1}{\sqrt{2017}+\sqrt{2015}}-\frac{1}{\sqrt{2018}+\sqrt{2022}}\right)>0\)

\(\Rightarrow A>B\)

giúp vs tth Trần Thanh Phương Nguyễn Văn Đạt Nguyễn Việt Lâm Akai Haruma