Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`(15-x)+(x-12)=7-(-5+x)`
`=>15-x+x-12=7+5-x`
`=>3=12-x`
`=>x=12-3`
`=>x=9`
Vậy `x=9`
\(1,2:\frac{3}{5}+\left(1\frac{1}{15}-\frac{8}{15}\right)x2\frac{2}{4}\)
\(=\frac{6}{5}x\frac{5}{3}+\left(\frac{16}{15}-\frac{8}{15}\right)x\frac{10}{4}\)
\(=2+\frac{8}{15}x\frac{10}{4}=2+\frac{2}{3}\)
\(=2\frac{2}{3}\)
\(1,2:\frac{3}{5}+\left(1\frac{1}{15}-\frac{8}{15}\right)\cdot2\frac{2}{4}\)
\(=\frac{6}{5}\cdot\frac{5}{3}+\left(\frac{16}{15}-\frac{8}{15}\right)\cdot\frac{10}{4}\)
\(=\frac{30}{15}+\frac{8}{15}\cdot\frac{10}{4}\)
\(=\frac{30}{15}+\frac{80}{60}=\frac{200}{60}\)
\(\frac{2}{2.4}+\frac{2}{4.6}+....+\frac{2}{x\left(x+2\right)}=\frac{4}{9}\)
<=> \(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+....+\frac{1}{x}-\frac{1}{x+2}=\frac{4}{9}\)
<=> \(\frac{1}{2}-\frac{1}{x+2}=\frac{4}{9}\)
<=> \(\frac{1}{x+2}=\frac{1}{18}\)
=> \(x+2=18\)
<=> \(x=16\)
Vậy...
a/ x=10 - vì: 2(1+2+...+x) =2X55 ;(45+10=55)*2= 110
1(Bạn ơi mk nghĩ nên thay 110=112 thế mới giải đc bài này nha ,còn nếu đề bạn khác thì cứ nhìn bài này mà làm)
2+4+6+...........+2x=112
=>2.(1+2+3+................+x)=112
=>1+2+3+.....................+x=112:2
=>1+2+3+.............+x=56
Có x số hạng
=>(x+1).x=56
=>(x+1).x=8.7
=>x=7\(\in\)N
Vậy x=7
2
+)Xét abcdef=abc.1000+def
=abc+999abc+def
=(abc+def)+27.37abc
Mà abc+def\(⋮\)37; 27.37abc\(⋮\)37
=>abc+999abc+def\(⋮\)37
Hay abcdef\(⋮\)37(đpcm)
Vậy abcdef\(⋮\)37 khi abc+def\(⋮\)37
Chúc bn học tốt
x2-2x+3
=x2-x-x+1+2
=x.(x-1)-(x-1)+2
=(x-1)(x-1)+2
Để x2-2x+3 chia hết cho x-1 thì:
(x-1)(x-1)+2 chia hết cho x-1
=>2 chia hết cho x-1
=>x-1 thuộc Ư(2)={1;-1;2;-2}
Ta có bàng sau:
x-1 | 1 | -1 | 2 | -2 |
x | 2 | 0 | 3 | -1 |
Vậy x={2;0;3;-1}
a) \(\frac{28\times7-45\times7+7\times18}{45\times14}\)
\(=\frac{7\left(28-45+7\right)}{45\times14}\)
\(=\frac{7\times\left(-10\right)}{45\times14}=\frac{-1}{9}\)
b) \(\frac{12.3-2.6}{4.5.6}\)
\(=\frac{2.6.3-2.6}{4.5.6}\)
\(=\frac{2.6\left(3-1\right)}{2.2.5.6}\)
\(=\frac{2.6.2}{2.2.5.6}\)\(=\frac{1}{5}\)
â) Ta có : 2 + 4 + 6 + ... + 2x = 110
=> 2(1 + 2 + 3 + .... + x) = 110
=> 2x(x + 1):2 = 110
=> x(x + 1) = 110
=> x(x + 1) = 10.11
=> x = 10 (tm)
Vậy x = 10
b) Ta có : abcdef = abc.1000 + def = abc + def + abc.99 = (abc + def) + abc.37.27
Khi đó \(\hept{\begin{cases}abc+def⋮37\\abc.37.27⋮37\end{cases}\Rightarrow abc+def+abc.37.27⋮37\Rightarrow abcdef⋮37}\)
Vậy nếu abc + def \(⋮\)37 => abcdef \(⋮\)37 (đpcm)
a, Đặt A = 2 + 4 + 6 +...+2x = 110
Số các số hạng tổng A là:
(2x-2):2+1 = 2(x-1):2+1 = x-1+1 = x ( số hạng )
Tổng A là:
(2x+2).x:2 = 2(x+1)x:2 = (x+1)x
mà tổng A bằng 110 => (x+1)x = 110 = 11.10 => x=10
b, ta có abc+def chia hết cho 37 => abc và def phải chia hết cho 37
lại có abcdef = abc.1000 + def mà abc chia hết cho 37 => abc.1000 chia hết cho 37
abc.1000 chia hết cho 37, def chia hết cho 37 => abc.1000 + def chia hết cho 37
hay abcdef chia hết cho 37
1,
x10 = x
=> x10 - x = 0
=> x(x9 - 1) = 0
=> \(\orbr{\begin{cases}x=0\\x^9-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x^9=1\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
KL: x thuộc {1; 0}
2,
\(S=2+2^2+2^3+...+2^{2016}\)
=> \(2S=2^2+2^3+2^4+...+2^{2017}\)
=> \(2S-S=\left(2^2+2^3+2^4+...+2^{2017}\right)-\left(2+2^2+2^3+...+2^{2016}\right)\)
=> \(S=2^{2017}-2\)
Bài 1:
x10 = x => x= { -1;1}
Bài 2:
\(S=2+2^2+2^3+...+2^{2016}\)
\(2S=2^2+2^3+2^4+2^{2017}\)
\(2S-S=2^{2017}-2\)
Vậy \(S=2^{2017}-2\)
( 2 + x ) + ( 4 + x ) + ( 6 + x ) + ... + ( 52 + x ) = 780
( x + x + x + ... + x ) + ( 2 + 4 + 6 + ... + 52 ) = 780
26x = 780 - 702
26x = 78
x = 78 : 26
x = 3
( 2 + x ) + ( 4 + x ) + ( 6 + x ) +...+ ( 52 + x ) = 780
=> 2 + x + 4 + x + 6 + x + .... + 52 + x = 780
=> ( x + x + x +... + x ) + ( 2 + 4 + 6 +...+ 52 ) = 780
=> 26x + 702 = 780
=> 26x = 780 - 702
=> 26x = 78
=> x = 78 : 26
=> x = 3