Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Theo tính chất hình bình hành : BA=DC \(\Rightarrow\overrightarrow{AB}=\overrightarrow{CD}\). Nhưng theo giả thiết A,B cố định , cho nên \(\overrightarrow{AB}\) cố định . Ví C chạy trên (O;R) , D là ảnh của C qua phép tịnh tiến theo \(\overrightarrow{AB}\) , cho nên D chạy trên đường tròn O’ là ảnh của đường tròn O
- Cách xác định (O’) : Từ O kẻ đường thẳng // với AB , sau đó dựng véc tơ \(\overrightarrow{OO'}=\overrightarrow{AB}\). Từ O’ quay đường tròn bán kính R , đó chính là đường tròn quỹ tích của D.
Theo t/c đường tròn, do M là trung điểm BC \(\Rightarrow OM\perp BC\)
Áp dụng định lý Pitago:
\(OM=\sqrt{OC^2-CM^2}=\sqrt{R^2-\left(\dfrac{BC}{2}\right)^2}=3\)
\(\Rightarrow\) Quỹ tích M là đường tròn tâm \(\left(O;3\right)\)
Mặt khác do G là trọng tâm tam giác ABC
\(\Rightarrow\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}\)
\(\Rightarrow\) G là ảnh của M qua phép vị tự tâm A tỉ số \(k=\dfrac{2}{3}\)
\(\Rightarrow\) Quỹ tích G là ảnh của \(\left(O;3\right)\) qua phép vị tự tâm A tỉ số \(k=\dfrac{2}{3}\)
\(\Rightarrow\) Quỹ tích G là đường tròn bán kính \(\dfrac{2}{3}.3=2\)
Đáp án B
Gọi I là trung điểm BCH’ đối xứng với H qua I
( CH’ // BH do HBH’C là hình bình hành)
⇒ H ' C H ^ + H C M ^ = C H M ^ + H C M ^ = 90 o
(Cách chứng minh khác: Ta có C H ⊥ A B
Mà H’B//CH
⇒ H ' B ⊥ A B ⇒ H ' B C ^ = 90 o ⇒ H ' ∈ ( O )
Đ I : O-> O’
⇒ O H ' = O ' H
H thuộc đường tròn (O’; R)
Đáp án B
Gọi O’ là điểm nằm trên OF và O’F = 1 3 OF
⇒ O ' G = 1 3 O A O ' G / / O A
Ta lại có: FG = 1 3 AF
Là đường tròn (O’; 1 3 R) với O’ là ảnh của O qua phép vị tự tâm O tỷ số 1 3
1. Cho đường tròn (O;R) và 1 điểm A cố định trên đường tròn, BC là 1 dây cung di động của đường tròn này và BC có độ dài không đổi = 2d (d<R). Tìm tập hợp trọng tâm G của ΔABC
Nối OA, gọi M là trung điểm BC \(\Rightarrow\) OM cố định
Qua G kẻ đường thẳng song song OA cắt OM tại P
Trong tam giác OAM, theo định lý Talet:
\(\dfrac{GP}{OA}=\dfrac{PM}{OM}=\dfrac{GM}{AM}=\dfrac{1}{3}\)
Ta có những điều sau:
\(PM=\dfrac{1}{3}OM\) , mà O cố định, M cố định \(\Rightarrow\) P cố định
\(GP=\dfrac{1}{3}OA\Rightarrow GP=\dfrac{R}{3}\)
P cố định, độ dài \(\dfrac{R}{3}\) cố định
\(\Rightarrow\) Quỹ tích G là đường tròn (P) tâm P bán kính \(r=\dfrac{R}{3}\) (1)
Mặt khác BGCD là hình bình hành \(\Rightarrow\) D đối xứng G qua M (2)
(1);(2) \(\Rightarrow\) quỹ tích D là ảnh của đường tròn (P) qua phép đối xứng tâm M