K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2021

2+-3/4

=2/1-(-3)/4

=8/4-(-3)/4

=-11/4

28 tháng 10 2016

Ta có:
Ư(8) = {1;2;4;8}
Ư(12) = {1;2;3;4;6;12}
Ư(15) = {1;3;5;15}
=> ƯCLN(8;12;15) = 1
Đúng ko? lolang

28 tháng 10 2016

Tìm ƯCLN(8,12,15)

Ta có:

8 = 23

12 = 22 . 3

15 = 3 . 5

Có: ƯCLN(8,12,15) = 1

 

DD
25 tháng 10 2021

\(3+3^2+3^3+...+3^{2012}\)

\(=\left(3+3^2+3^3+3^4\right)+...+\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\)

\(=3\left(1+3+3^2+3^3\right)+...+3^{2009}\left(1+3+3^2+3^3\right)\)

\(=40\left(3+...+3^{2009}\right)⋮40\)

26 tháng 10 2021

rrrrr

30 tháng 12 2020

2^1+2^2+2^3+2^4+.....................+2^108

=(2^1+2^2+2^3)+(2^4+2^5+2^6)+........+(2^106+2^107+2^108)

=2(1+2+2^2)+2^4(1+2+2^2)+..........+2^106(1+2+2^2)

=(2+2^4+.......+2^106)(1+2+2^2)

=7(2+2^4+.....+2^106)chia hết cho 7 (đcpm)

mình mất 10 phút để trả lời câu hỏi này đấy

30 tháng 4 2017

\(E=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)

\(3E=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)

\(3E-E=\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\right)\)

\(2E=1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(6E=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

\(6E-2E=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\right)\)

\(4E=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}\)

\(4E=3-\frac{300}{3^{100}}-\frac{3}{3^{100}}+\frac{100}{3^{100}}\)

\(4E=3-\frac{203}{3^{100}}< 3\)

\(\Rightarrow4E< 3\)

\(\Rightarrow E< \frac{3}{4}\left(đpcm\right)\)

30 tháng 4 2017

Bài 1:

Ta có: \(3+3^2+3^3+...+3^{100}\)

\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)

\(=120+3^5\left(3+3^2+3^3+3^4\right)+....+3^{96}\left(3+3^2+3^3+3^4\right)\)

\(=120+3^5.120+...+3^{96}.120\)

\(=120.\left(1+3^5+.....+3^{96}\right)\)

\(\Rightarrow3+3^2+3^3+3^4+....+3^{100}\)chia hết cho 120 (vì có chứa thừa số 120)

23 tháng 12 2018

\(A=3+3^2+3^3+...+3^{20}\)

\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{19}+3^{20}\right)\)

\(A=3\left(1+3\right)+3^3\left(3+1\right)+...+3^{19}\left(1+3\right)\)

\(\Rightarrow A=4\left(3+3^3+...+3^{19}\right)\)

\(\Rightarrow A⋮4\)

23 tháng 12 2018

\(A=3+3^2+3^3+...+3^{20}\)

\(\Rightarrow3A=3^2+3^3+...+3^{20}+3^{21}\)

\(\Rightarrow3A-A=\left(3^2+3^3+...+3^{21}\right)-\left(3+3^2+....+3^{20}\right)\)

\(\Rightarrow2A=3^{21}-3\)

\(\Rightarrow A=\frac{3^{21}-3}{2}\)

18 tháng 12 2016

\(A=3+3^2+3^3+3^4+...+3^9+3^{10}\)(có 10 số)

\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^9+3^{10}\right)\)(có 5 nhóm)

\(A=3\left(1+3\right)+3^3\left(1+3\right)+...+3^9\left(1+3\right)\)

\(A=\left(1+3\right)\left(3+3^3+...+3^9\right)\)

\(A=4\left(3+3^3+...+3^9\right)⋮4\left(đpcm\right)\)

18 tháng 12 2016

A = 3+32+33+...+39+310

A = (3+ 32)+(33+34)+...+(39+310)

A = 3(1+3)+33(1+3)+...+39 (1+3)

A = (1+3)(3+33+...+39)

A = 4(3+33+...+39) => chia hết cho 4

18 tháng 12 2016

\(A=3+3^2+...+3^{10}\)

\(=\left(3+3^2\right)+...+\left(3^9+3^{10}\right)\)

\(=3\left(1+3\right)+...+3^9\left(1+3\right)\)

\(=3\cdot4+...+3^9\cdot4\)

\(=4\cdot\left(3+...+3^9\right)⋮4\)