Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3+3^2+3^3+...+3^{2012}\)
\(=\left(3+3^2+3^3+3^4\right)+...+\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\)
\(=3\left(1+3+3^2+3^3\right)+...+3^{2009}\left(1+3+3^2+3^3\right)\)
\(=40\left(3+...+3^{2009}\right)⋮40\)
a) Gọi 3 STN liên tiếp là a; a+1 ; a+2.
Ta có: a + a+1 + a+2 = a+a+a + (1+2) = 3a + 3.
Vì 3a và 3 chia hết cho 3 => 3a+3 chia hết cho 3 hay tổng 3 STN liên tiếp chia hết cho 3
a) Gọi 3 số tự nhiên liên tiếp là a ; a+1 ; a+2 ( a thuộc N )
Ta có : a+(a+1)+(a+2)=3a+3=3 . ( a + 1 ) chia hết cho 3
Vậy tổng của 3 số liên tiếp chia hết cho 3
b) Gọi 4 số tự nhiên liên tiếp là a ; a+1 ; a+2 ; a+3 ( a thuộc N )
Ta có : a+(a+1)+(a+2)+(a+3)=4a + 6 ko chia hết cho 4 ( 6 ko chia hết cho 4 )
\(A=3+3^2+3^3+...+3^{20}\)
\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{19}+3^{20}\right)\)
\(A=3\left(1+3\right)+3^3\left(3+1\right)+...+3^{19}\left(1+3\right)\)
\(\Rightarrow A=4\left(3+3^3+...+3^{19}\right)\)
\(\Rightarrow A⋮4\)
\(A=3+3^2+3^3+...+3^{20}\)
\(\Rightarrow3A=3^2+3^3+...+3^{20}+3^{21}\)
\(\Rightarrow3A-A=\left(3^2+3^3+...+3^{21}\right)-\left(3+3^2+....+3^{20}\right)\)
\(\Rightarrow2A=3^{21}-3\)
\(\Rightarrow A=\frac{3^{21}-3}{2}\)