Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên mặt phẳng cho n > = điểm sao cho khoảng cách giữa 2 điểm bất kì đôi một khác nhau. Người ta nối mỗi điểm với điểm gần nhất.
CMR qua mỗi điểm co không quá 5 đoạn thẳng
Bài 5:
Giả sử tồn tại 7 số không thỏa mãn điều kiện đề bài. Không mất tính quát, ta coi rằng \(x_1< x_2< ...< x_7\)
Do 7 số đã cho là các số nguyên dương nên :
\(x_2\ge x_1+1\)
\(x_3+x_1\ge4x_2\ge4\left(x_1+1\right)\Rightarrow x_3\ge3x_1+4\)
\(x_4+x_1\ge4x_3\ge4\left(3x_1+4\right)\Rightarrow x_4\ge11x_1+16\)
\(x_5+x_1\ge4x_4\ge4\left(11x_1+16\right)\Rightarrow x_5\ge43x_1+64\)
\(x_6+x_1\ge4x_5\ge4\left(43x_1+64\right)\Rightarrow x_6\ge171x_1+256\)
\(x_7+x_1\ge4x_6\ge4\left(171x_1+256\right)\Rightarrow x_7\ge683x_1+1024\)
Do x1 là số nguyên dương nên \(x_1\ge1\Rightarrow x_7\ge683+1024=1707>1706\) (Vô lý)
Vậy nên phải tồn tại bộ ba số thỏa mãn yêu cầu của đề bài.
Em viết đề bài sai lung tung cả: Bài 1. Thực chất yêu cầu là tỉ số lớn hơn hoặc bằng căn 2. Dấu bằng có thể xảy ra ví dụ xét hình vuông. Bài 2: Điểm M nằm trong góc, qua M kẻ đường thẳng ...
1. Để giải bài toán này ta cần một nhận xét đơn giản sau: Nếu tam giác \(ABC\) có góc \(\angle A\ge90^{\circ}\) và có cạnh \(AB\le AC\) thì \(\frac{BC}{AB}\ge\sqrt{2}.\)
Chứng minh nhận xét: Trên cạnh AC lấy X sao cho AB=AX, suy ra tam giác ABX vuông cân và do đó theo định lý Pitago \(BX^2=AB^2+AX^2=2AB^2\to BX=AB\sqrt{2}.\)
Mặt khác hoặc X trung C, khi đó BX=BC, hoặc tam giác \(\Delta BXC\) có góc ở X tù nên \(BC>BX\).
Vậy ta luôn có \(BC\ge AB\sqrt{2}\to\frac{BC}{AB}\ge\sqrt{2}.\)
Giải bài toán 1. Ta giả sử bốn điểm là A,B,C,D. Khi đó hoặc chúng là bốn đỉnh của một tứ giác lồi, hoặc một tứ giác lõm.
Trường hợp 1. Nếu ABCD là tứ giác lồi, vì tổng các góc trong một tứ giác là 360 nên không mất tính tổng quát ta có thể coi \(\angle B\ge90^{\circ}\). Áp dụng nhận xét cho tam giác ABC ta được \(\frac{BC}{AB}\ge\sqrt{2}\) hoặc \(\frac{BC}{AC}\ge\sqrt{2}\to\frac{M}{m}\ge\sqrt{2}.\) Ở đây kí hiệu M,m là độ dài đoạn lớn nhất và bé nhất.
Trường hợp 2. ABCD là tứ giác lõm, không mất tính tổng quát coi D nằm trong tam giác ABC. Khi đó trong ba góc \(\angle ADB,\angle BDC,\angle CDA\) có một góc tù. Giả sử góc \(\angle ADC>90^{\circ}\), suy ra \(\frac{AC}{AD}\ge\sqrt{2}\) hoặc \(\frac{AC}{CD}\ge\sqrt{2}\to\frac{M}{m}\ge\sqrt{2}.\)
Vậy ta có \(\frac{M}{m}\ge\sqrt{2}.\)
Bài toán 2. Cho góc vuông xOy, và điểm M nằm trong. Vẽ đường thẳng d cắt Ox,Oy ở A,B khác O. Tìm vị trí của đường thẳng d để
a)OAB có diện tích bé nhất
b)OA+OB nhỏ nhất.
Kí hiệu E,F là hình chiếu của M lên các cạnh Ox,Oy. Để cho tiện ta đặt \(a=FB,b=EA,x=ME,y=MF.\) Chú ý rằng \(x,y\) là các số dương không đổi. Từ \(\Delta MFB\sim\Delta AEM\to\) \(\frac{a}{y}=\frac{x}{b}\to ab=xy\). Theo bất đẳng thức Cô-Si thì \(a+b\ge2\sqrt{ab}=2\sqrt{xy}\to a+b+x+y\ge x+y+2\sqrt{xy}=\left(\sqrt{x}+\sqrt{y}\right)^2\)
\(\to OA+OB\ge\left(\sqrt{x}+\sqrt{y}\right)^2.\) Dấu bằng xảy ra khi và chỉ \(a=b=\sqrt{xy}.\) Khi đó trên Ox lấy A sao cho \(OA=x+\sqrt{xy}\), đường thẳng d qua AM sẽ thỏa mãn yêu cầu. Vậy giá trị bé nhất của \(OA+OB\) là \(\left(\sqrt{x}+\sqrt{y}\right)^2.\)
Chú ý rằng \(S_{OAB}=S_{OBM}+S_{OAM}=\frac{1}{2}x\left(a+y\right)+\frac{1}{2}y\left(x+b\right)=xy+\frac{1}{2}\left(xa+yb\right).\)
Theo bất đẳng thức Cô-Si \(xa+yb\ge2\sqrt{xayb}=2xy\to S_{OAB}\ge xy+xy=2xy.\) Dấu bằng xảy ra khi \(xa=yb,xy=ab\leftrightarrow b=x,a=y\leftrightarrow M\) là trung điểm \(AB.\)
Vậy giá trị bé nhất của diện tích tam giác \(OAB\) là \(2xy.\)