\(\frac{a-1}{3}\)=\(\frac{b+2}{4}\)=
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2020

a) Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b}{2+3}=\frac{-15}{5}=-3\)(Vì a + b = -15)

=> a = -6 ; b = -9 ; c = -12

b) Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=k\Rightarrow\hept{\begin{cases}a=2k\\b=3k\\c=4k\end{cases}}\)

Khi đó a + 2b - 3c = -20

<=> 2k + 2.3k - 3.4k = -20

=> 2k + 6k - 12k = -20

=> -4k = -20

=> k = 5

=> a = 10 ; b = 15 ; c = 20

17 tháng 11 2016

\(\frac{b}{3}\Rightarrow\frac{2b}{6};\frac{c}{4}\Rightarrow\frac{3c}{12}\)

\(\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}\)

Áp dụng dãy tỉ số bằng nhau ta có:

\(\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}=\frac{a+2b-3c}{2+6-12}=\frac{-20}{-4}=5\)

\(\frac{a}{2}=5\Rightarrow a=10\)

\(\frac{2b}{6}=5\Rightarrow b=15\)

\(\frac{3c}{12}=5\Rightarrow c=20\)

tíc mình nha

14 tháng 10 2016

Tìm các số a, b, c  biết rằng :

     1 . Ta có:       \(\frac{a}{20}=\frac{b}{9}=\frac{c}{6}=\frac{a}{20}=\frac{2b}{9.2}=\frac{4c}{6.4}=\frac{a}{20}=\frac{2b}{18}=\frac{4c}{24}\)

 Ap dụng tính chất dãy tỉ số bắng nhau ta dược :

                    \(\frac{a}{20}=\frac{2b}{18}=\frac{4c}{24}\)=\(\frac{a-2b+4c}{20-18+24}=\frac{13}{26}=\frac{1}{3}\)( do x+2b+4c=13)

Nên : a/20=1/3\(\Leftrightarrow\)     a=1/3.20    \(\Leftrightarrow\)a=20/3

        b/9=1/3   \(\Leftrightarrow\)      b=1/3.9     \(\Leftrightarrow\)    b=3

        c/6=1/3   \(\Leftrightarrow\)      c=1/3.6   \(\Leftrightarrow\)      c= 2

14 tháng 10 2016

mấy bài sau làm tương tự nhu câu 1

29 tháng 11 2019

Các bạn giúp mình nhé ! Mình đang cần gấp

Ta có: \(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{b+a+d}=\frac{d}{c+b+a}\)

\(\Rightarrow\frac{a}{b+c+d}+1=\frac{b}{a+c+d}+1=\frac{c}{b+a+d}+1=\frac{d}{c+b+a}+1\)

\(\Rightarrow\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{b+a+d}=\frac{a+b+c+d}{c+b+a}\)

Mà a+b+c+d khác 0

=> b+c+d = a+c+d = b+a+d = c+b+a

=> b = a = c = d

Ta có:

\(P=\frac{2a+5b}{3c+4d}-\frac{2b+5c}{3d+4a}-\frac{2c+5d}{3a+4b}-\frac{2d+5a}{3c+4b}\)

\(P=\frac{2a+5a}{3a+4a}-\frac{2b+5b}{3b+4b}-\frac{2c+5d}{3c+4c}-\frac{2d+5d}{3d+4d}\)

\(P=\frac{7a}{7a}-\frac{7b}{7b}-\frac{7c}{7c}-\frac{7d}{7d}\)

\(P=1-1-1-1=-2\)