Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)
\(.............\)
\(\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}\)
Khi đó:
\(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+.....+\frac{1}{\sqrt{100}}\)
\(>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+.......+\frac{1}{\sqrt{100}}\left(100sohang\right)\)
\(=10\)
a) \(\sqrt{\frac{4}{81}}:\sqrt{\frac{25}{81}}-1\frac{2}{5}\)
\(=\frac{2}{9}:\frac{5}{9}-\frac{7}{5}\)
\(=\frac{2}{5}-\frac{7}{5}\)
\(=-1.\)
b) \(\sqrt{36}.\sqrt{\frac{25}{16}}+\frac{1}{4}\)
\(=6.\frac{5}{4}+\frac{1}{4}\)
\(=\frac{15}{2}+\frac{1}{4}\)
\(=\frac{31}{4}.\)
c) \(1\frac{1}{2}+\frac{4}{7}:\left(-\frac{8}{9}\right)\)
\(=\frac{3}{2}+\frac{4}{7}:\left(-\frac{8}{9}\right)\)
\(=\frac{3}{2}+\left(-\frac{9}{14}\right)\)
\(=\frac{6}{7}.\)
d) \(1,17-0,4.\left(\frac{1}{2}\right)^2-\frac{1}{-5}\)
\(=\frac{117}{100}-\frac{2}{5}.\frac{1}{4}-\left(-\frac{1}{5}\right)\)
\(=\frac{117}{100}-\frac{1}{10}+\frac{1}{5}\)
\(=\frac{107}{100}+\frac{1}{5}\)
\(=\frac{127}{100}.\)
Chúc bạn học tốt!
a, \(\frac{4}{81}:\sqrt{\frac{25}{81}-1\frac{2}{5}}\)
\(\Rightarrow\frac{4}{81}:\frac{5}{9}-\frac{7}{5}\)
\(\Rightarrow\frac{4}{81}.\frac{9}{5}-\frac{7}{5}\)
\(\Rightarrow\frac{4}{9}.\frac{1}{5}-\frac{7}{5}\)
\(\Rightarrow\frac{-59}{45}\)
b,\(\sqrt{36}.\sqrt{\frac{25}{16}+\frac{1}{4}}\)
\(\Rightarrow6.\frac{5}{4}+\frac{1}{4}\)
\(\Rightarrow\frac{15}{2}+\frac{1}{4}\)
\(\Rightarrow\frac{31}{4}\)
c,\(1\frac{1}{2}+\frac{4}{7}:\frac{-8}{9}\)
\(\Rightarrow\frac{3}{2}-\frac{4}{7}.\frac{-8}{9}\)
\(\Rightarrow\frac{3}{2}-\frac{9}{14}\)
\(\Rightarrow\frac{6}{7}\)
d, \(1,17-\left(0,4.\frac{1}{2}\right)^2-\frac{1}{5}\)
\(\Rightarrow\frac{117}{100}-\left(\frac{1}{5}\right)^2-\frac{1}{5}\)
\(\Rightarrow\frac{117}{100}-\frac{1}{25}-\frac{1}{5}\)
\(\Rightarrow\frac{93}{100}\)
a) \(\left(\frac{2^2}{5}\right)+5\frac{1}{2}.\left(4,5-2,5\right)+\frac{2^3}{-4}\)
\(=\frac{4}{5}+\frac{11}{2}.2+\frac{-8}{4}\)
\(=\frac{4}{5}+11-2\)
\(=\frac{4}{5}+9\)
\(=\frac{49}{9}\)
b) \(\left(-2^3\right)+\frac{1}{2}:\frac{1}{8}-\sqrt{25}+\left|-64\right|\)
\(=-8+4-5+64\)
= 55
c) \(\frac{\sqrt{3^2+\sqrt{39}^2}}{\sqrt{91^2}-\sqrt{\left(-7\right)^2}}\)
\(=\frac{\sqrt{9+39}}{91-\sqrt{49}}\)
\(=\frac{\sqrt{48}}{91-7}\)
\(=\frac{4\sqrt{3}}{84}\)
\(=\frac{\sqrt{3}}{41}\)
d) Xem lại đề nhé em!
e) \(\sqrt{25}-3\sqrt{\frac{4}{9}}\)
\(=5-3.\frac{2}{3}\)
= 5 - 2
= 3
h) \(\left(-3^2\right).\frac{1}{3}-\sqrt{49}+\left(5^3\right):\sqrt{25}\)
\(=-9.\frac{1}{3}-7+125:5\)
\(=-3-7+25\)
= 15
a) Ta có \(\sqrt{17}\)>\(\sqrt{16}\)
\(\sqrt{26}\)>\(\sqrt{25}\)
=>\(\sqrt{17}\)+\(\sqrt{26}\)+1>\(\sqrt{16}\)+\(\sqrt{25}\)+1
=>\(\sqrt{17}\)+\(\sqrt{26}\)+1> 4+ 5 +1
=>\(\sqrt{17}\)+\(\sqrt{26}\)+1 >10 hay >\(\sqrt{100}\)
=>\(\sqrt{17}\)+\(\sqrt{26}\)+1>\(\sqrt{99}\)
b) \(\frac{1}{\sqrt{1}}\)=1 >\(\frac{1}{10}\)
\(\frac{1}{\sqrt{2}}\)>\(\frac{1}{\sqrt{100}}\)=\(\frac{1}{10}\)
....................................
\(\frac{1}{\sqrt{100}}\)=\(\frac{1}{10}\)
=>\(\frac{1}{\sqrt{1}}\)+\(\frac{1}{\sqrt{2}}\)+\(\frac{1}{\sqrt{3}}\)+...+\(\frac{1}{\sqrt{100}}\)>\(\frac{1}{10}\)+\(\frac{1}{10}\)+...+\(\frac{1}{10}\)(có 100 số \(\frac{1}{10}\))
=>\(\frac{1}{\sqrt{1}}\)+\(\frac{1}{\sqrt{2}}\)+\(\frac{1}{\sqrt{3}}\)+...+\(\frac{1}{\sqrt{100}}\)> \(\frac{100}{10}\)=10
\(a)\) Ta có :
\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10=\sqrt{100}>\sqrt{99}\)
Vậy \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)
Chúc bạn học tốt ~
Câu a)
\(A=\sqrt{20+1}+\sqrt{40+2}+\sqrt{60+3}\)
\(=\sqrt{1\left(20+1\right)}+\sqrt{2\left(20+1\right)}+\sqrt{3\left(20+1\right)}\)
\(=\sqrt{20+1}\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)\)
\(B=\sqrt{1}+\sqrt{2}+\sqrt{3}+\sqrt{20}+\sqrt{40}+\sqrt{60}\)
\(=1\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)+\left(\sqrt{1}\cdot\sqrt{20}+\sqrt{2}\cdot\sqrt{20}+\sqrt{3}\cdot\sqrt{20}\right)\)
\(=\sqrt{1}\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)+\sqrt{20}\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)\)
\(=\left(\sqrt{20}+\sqrt{1}\right)\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)\)
Ta thấy: \(\hept{\begin{cases}\left(\sqrt{20+1}\right)^2=20+1\\\left(\sqrt{20}+\sqrt{1}\right)^2=20+1+2\sqrt{20}\end{cases}}\)
\(\Rightarrow\left(\sqrt{20+1}\right)^2< \left(\sqrt{20}+\sqrt{1}\right)^2\Rightarrow\sqrt{20+1}< \sqrt{20}+\sqrt{1}\)
Vậy A < B.
Bài 11: Cho tam giác ABC có AB=AC. Gọi M là trung điểm của BC. Chứng minh rằng:
a. AMB = AMC
b. AM là tia phân giác của góc
c. AM ⊥ BC
d. Vẽ At là tia phân giác của góc ngoài ở đỉnh A của Chứng minh:At//BC
Bài 12: Cho tam giác ABC, = 900. Trên BC lấy E sao cho BE = BA. Tia phân giác của góc B cắt AC ở D.
a. Chứng minh Δ ABD = Δ EBD
b. Tính số đo
c. Chứng minh BD ⊥ AE
Bài 13: Cho tam giác ABC, D là trung điểm của AB, E là trung điểm của AC. Vẽ F sao cho E là trung điểm của DF. Chứng minh:
a. ADE = CFE
b. DB = CF
c. AB // CF
d. DE // BC
Bài 14: Cho tam giác ABC có BA<BC. Trên tia BA lấy điểm D sao cho BD = BC.Tia phân giác của góc B cắt AC và DC lần lượt tại E và I.
a. Chứng minh rằng: ΔBEC =Δ BED
b. Chứng minh ID = IC
c. Từ A kẻ AH DC, H. Chứng minh: AH // BI
Bài 15: Cho tam giác ABC. Trên tia đối AB lấy D sao cho AD = AB, trên tia đối AC lấy điểm E sao cho AE = AC.
a. Chứng minh rằng: BE = CD
b. Chứng minh: BE//CD
c. Gọi M là trung điểm của BE và N là trung điểm của CD. Chứng minh:AM = AN
Hình học nha:)2) so sánh
Ta có \(\sqrt{17}\)>\(\sqrt{16}\)=4
\(\sqrt{26}\)>\(\sqrt{25}\)=5
=> \(\sqrt{17}+\sqrt{26}>\sqrt{16}+\sqrt{25}\)
=>\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1\)
=>\(\sqrt{17}+\sqrt{25}+1>5+4+1=10\)
Mà \(\sqrt{99}< \sqrt{100}=10\)
Vậy \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)
mk giúp bạn được câu 2 thôi
Xin lỗi nhá
x+1/3-4=-1
=>x+1/3=-1+4
=>x+1/3=3
=>x =3-1/3
=>x =8/3
Vậy x = 8/3
(2/25-1,008):4/7:(13/4-6/5/9)*36/17
=(2/25-126/125).7/4:(13/4-59/9)*36/17
=(10/125-126/125).7/4:(117/36-236/36)*36/17
=-116/125.7/4.(-36/119).36/17
=-203/125.(-1296/2023)=263088/252875
Mình tính ko nhanh đâu