Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔPOQ có OP=OQ=PQ
nên ΔOPQ đều
=>góc POQ=60 độ
=>góc NOQ=30 độ
a) Xét (O) có
CD là dây cung(C,D∈(O))
B là điểm chính giữa của \(\stackrel\frown{CD}\)(gt)
Do đó: \(\stackrel\frown{CB}=\stackrel\frown{BD}\)
⇒\(sđ\widehat{CB}=sđ\widehat{BD}\)(1)
Xét (O) có
\(\widehat{BMD}\) là góc nội tiếp chắn cung BD(gt)
nên \(\widehat{BMD}=\dfrac{1}{2}\cdot sđ\stackrel\frown{BD}\)(Định lí góc nội tiếp)(2)
Xét (O) có
\(\widehat{BAC}\) là góc nội tiếp chắn cung BC(gt)
nên \(\widehat{BAC}=\dfrac{1}{2}\cdot sđ\widehat{CB}\)(Định lí góc nội tiếp)(3)
Từ (1), (2) và (3) suy ra \(\widehat{BMD}=\widehat{BAC}\)(đpcm)
Đổi: 675km = 67 500 000cm
Trên bản đồ tỉ lệ 1:2 500 000 quãng đường dài là:
67 500 000 : 2 500 000 = 27 (cm)
Đáp số: 27 cm
Xin lỗi nha
a, Vì OC=OB nên \(\Delta BOC\)cân tại O \(\Rightarrow\widehat{BOC}=\widehat{OCB}=60^0\)
Mà \(\Delta ACB\)nội tiếp (O) nên \(\widehat{ACB}=90^0\Rightarrow\widehat{BAC}=30^0\)
\(\Delta AOC\)cân nên \(\widehat{BAC}=\widehat{MCO}=30^0\)(1)
Lại có \(\widehat{MOC}=90^0-60^0=30^0\left(2\right)\)
Từ (1) và (2) => MO=MC
b, Vì M nằm trên OK => MA=MB
\(\Rightarrow\Delta AMB\)cân \(\Rightarrow\widehat{MAO}=\widehat{MBO}=30^0\)
Lại có \(OM=tan30^0.OB=R\frac{\sqrt{3}}{3}\)
mình đánh nhầm sửa lại nhé
maxp=2068\(\Leftrightarrow\)\(\Leftrightarrow\Leftrightarrow\)\(\Leftrightarrow\) a=25;b=5
1)maxP=2068\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\) khi và chỉ khi a=25 ; b=5