K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2019

\(a,\frac{1}{999\cdot1000}-\frac{1}{998\cdot999}-\frac{1}{997\cdot998}-...-\frac{1}{2\cdot1}\)

\(=\frac{1}{999\cdot1000}-\left[\frac{1}{2\cdot1}+\frac{1}{2\cdot3}+...+\frac{1}{997\cdot998}+\frac{1}{998\cdot999}\right]\)

\(=\frac{1}{999\cdot1000}-\left[1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{998}-\frac{1}{999}\right]\)

\(=\frac{1}{999\cdot1000}-\left[1-\frac{1}{999}\right]=\frac{1}{999\cdot1000}-\frac{998}{999}=...\)

Tính nốt , không chắc :v

20 tháng 7 2017

Đặt Q = \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{997.998}+\frac{1}{999.1000}\)

Đặt A = \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{997.999}\)

\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{997}-\frac{1}{999}\)

\(2A=1-\frac{1}{999}\)

\(2A=\frac{998}{999}\)

\(\Leftrightarrow A=\frac{499}{999}\)

Đặt B = \(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{998.1000}\)

\(2B=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{998}-\frac{1}{1000}\)

\(2B=\frac{1}{2}-\frac{1}{1000}\)

\(B=\frac{499}{1000}\)

Vậy Q = A + B = \(\frac{499}{999}+\frac{499}{1000}\)

19 tháng 7 2017

\(\frac{1}{1.2}+\frac{1}{2.3}+...........+\frac{1}{999.1000}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..........+\frac{1}{999}-\frac{1}{1000}\)

\(=1-\frac{1}{1000}=\frac{999}{1000}\)

20 tháng 7 2017

Đặt 

\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{999.1000}\)

\(\Leftrightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{999}-\frac{1}{1000}\)

\(\Leftrightarrow A=1-\frac{1}{1000}\)

\(\Leftrightarrow A=\frac{999}{1000}\)

20 tháng 7 2017

bạn viết sai đề rồi

20 tháng 7 2017

Đặt biểu thức là A.

A=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{999}-\frac{1}{1000}\)

A=\(\frac{1}{1}-\frac{1}{1000}\)

A=\(\frac{999}{1000}\)

AH
Akai Haruma
Giáo viên
15 tháng 4 2023

a.

$A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{1000-999}{999.1000}$

$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}$

$=1-\frac{1}{1000}=\frac{999}{1000}$

AH
Akai Haruma
Giáo viên
15 tháng 4 2023

b.

$5B=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+....+\frac{5}{495.500}$

$=\frac{6-1}{1.6}+\frac{11-6}{6.11}+\frac{16-11}{11.16}+....+\frac{500-495}{495.500}$

$=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+....+\frac{1}{495}-\frac{1}{500}$

$=1-\frac{1}{500}=\frac{499}{500}$

$\Rightarrow B=\frac{499}{500}: 5= \frac{499}{2500}$

10 tháng 5 2016

\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{99.100}\)

\(B=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)

\(B=\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{100}\right)\)

\(B=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(B=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{25}\right)\)

\(B=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+....+\frac{1}{100}=A\)

=>A/B=1

đặt \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{18.19.20}\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}\left(\frac{1}{18.19}-\frac{1}{19.20}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{380}\right)=\frac{189}{760}\)

Đặt \(B=\frac{3}{1.2}+\frac{3}{2.3}+...+\frac{3}{19.20}=\frac{3}{1}-\frac{3}{2}+\frac{3}{2}-\frac{3}{3}+...+\frac{3}{19}-\frac{3}{20}\)

\(=3-\frac{3}{20}=\frac{57}{20}\)

\(D=A-B=\frac{189}{760}-\frac{57}{20}=-\frac{1977}{760}\)

5 tháng 7 2017

Gọi \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}\)là A

\(\frac{3}{1.2}-\frac{3}{2.3}-...-\frac{3}{19.20}\)là B

\(A=\left[\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}.\left(\frac{1}{18.19}-\frac{1}{19.20}\right)\right]\)

\(A=\left[\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\right]\)

\(A=\left[\frac{1}{2}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}\right)\right]\)

\(A=\left[\frac{1}{2}.\left(1-\frac{1}{20}\right)\right]\)

\(A=\frac{1}{2}.\frac{19}{20}\)

\(A=\frac{19}{40}\)

\(B=\frac{3}{1.2}-\frac{3}{2.3}-...-\frac{3}{19.20}\)

\(B=\left(\frac{3}{1.2}+\frac{3}{2.3}+...+\frac{3}{19.20}\right)\)

\(B=\left[3.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{19.20}\right)\right]\)

\(B=\left[3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{2}{3}+...+\frac{1}{19}-\frac{1}{20}\right)\right]\)

\(B=\left[3.\left(\frac{19}{20}\right)\right]\)

\(B=\frac{57}{20}\)

Vậy A - B = \(\frac{19}{40}-\frac{57}{20}\)

\(=-\frac{95}{40}=-\frac{19}{8}\)

Nếu đúng thì k nha

Ta có:A = 1/1.2 + 1/2.3 + 1/3.4 + ...+ 1/2020.2021

         A=1-1/2+1/2-1/3+1/3-1/4+...+1/2020-1/2021

        A=1-1/2021

Ta có: B = 1/6 + 1/12 + 1/20 + ... + 1/240

          B=1/2.3+1/3.4+1/4.5+....+1/15.16

           B=1/2-1/3+1/3-1/4+1/4-1/5+....+1/15-1/16

          B=1/2-1/16

phần C bn có đánh nhầm đề bài ko

6 tháng 5 2016

A=1/1nhân 2+1/2 nhân 3+1/3 nhân 4+...+1/2014 nhân 2015

A=1/1-1/2+1/2-1/3+1/3-1/4+...+1/2014-1/2015

A=1/1-1/2015

A=2015/2015-1/2015

A=2014/2015

Mà 2014/2015<1

Vậy A<1

20 tháng 3 2016

Ta có: \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{999.1000}\)

\(=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+...+\left(\frac{1}{999}-\frac{1}{1000}\right)\)

\(=\frac{1}{1}-\frac{1}{1000}\)

\(=\frac{999}{1000}\)

20 tháng 3 2016

1/1.2+1/2.3+1/3.4+...+1/999.1000

=1/1-1/2+1/2-1/3+1/3-1/4+...+1/999-1000

=1/1-1/1000

=999/1000