Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{132}\)
\(=\frac{22}{132}+\frac{11}{132}+\frac{1}{20}+\frac{1}{132}\)
\(=\frac{33}{132}+\frac{1}{20}+\frac{1}{132}\)
\(=\frac{34}{132}+\frac{1}{20}\)
\(=\frac{17}{66}+\frac{1}{20}\)
\(=\frac{203}{660}\)
\(a,\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{132}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{132}\)
\(=\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\right)+\frac{1}{132}\)
\(=\left(\frac{1}{2}-\frac{1}{5}\right)+\frac{1}{132}\)
\(=\frac{3}{10}+\frac{1}{132}\)
\(=\frac{198}{660}+\frac{5}{660}\)
\(=\frac{203}{660}\)
Ta có \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-....+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
Ta có \(B=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
\(=\frac{1}{2}-\frac{1}{7}\)
\(=\frac{5}{14}\)
Ta có \(C=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}\)
\(=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}\)
\(=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{11}\right)\)
\(=\frac{1}{6}-\frac{1}{22}\)
\(=\frac{4}{33}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}\)
\(B=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(B=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
\(B=\frac{1}{2}-\frac{1}{7}\)
\(B=\frac{5}{14}\)
\(C=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}\)
\(C=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)
\(C=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}\right)\)
\(C=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{11}\right)\)
\(C=\frac{1}{6}-\frac{1}{22}=\frac{4}{33}\)
\(\text{#}HaimeeOkk\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2018.2019}+\dfrac{1}{2019.2020}\)
\(A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2018}-\dfrac{1}{2019}+\dfrac{1}{2019}-\dfrac{1}{2020}\)
\(A=1-\left(\dfrac{1}{2}-\dfrac{1}{2}\right)-\left(\dfrac{1}{3}-\dfrac{1}{3}\right)-\left(\dfrac{1}{4}-\dfrac{1}{4}\right)-...-\left(\dfrac{1}{2019}-\dfrac{1}{2019}\right)-\dfrac{1}{2020}\)
\(A=1-0-0-0-...-0-\dfrac{1}{2020}\)
\(A=1-\dfrac{1}{2020}\)
\(A=\dfrac{2019}{2020}\)
Vậy \(A=\dfrac{2019}{2020}\)
1.
a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{98}{99}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x-1}=\frac{98}{99}\)
\(1-\frac{1}{x-1}=\frac{98}{99}\)
\(\frac{1}{x-1}=1-\frac{98}{99}\)
\(\frac{1}{x-1}=\frac{1}{99}\)
\(\Rightarrow x-1=99\)
\(\Rightarrow x=99+1=100\)
b) \(x-\frac{20}{11.13}-\frac{20}{13.15}-\frac{20}{15.17}-...-\frac{20}{53.55}=\frac{3}{11}\)
\(x-\left(\frac{20}{11.13}+\frac{20}{13.15}+\frac{20}{15.17}+...+\frac{20}{53.55}\right)=\frac{3}{11}\)
\(x-\left[10.\left(\frac{1}{11}-\frac{1}{13}\right)+10.\left(\frac{1}{13}-\frac{1}{15}\right)+10.\left(\frac{1}{15}-\frac{1}{17}\right)+...+10.\left(\frac{1}{53}-\frac{1}{55}\right)\right]=\frac{3}{11}\)
\(x-\left[10.\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+...+\frac{1}{53}-\frac{1}{55}\right)\right]=\frac{3}{11}\)
\(x-\left[10.\left(\frac{1}{11}-\frac{1}{55}\right)\right]=\frac{3}{11}\)
\(x-10.\frac{4}{55}=\frac{3}{11}\)
\(x-\frac{8}{11}=\frac{3}{11}\)
\(\Rightarrow x=\frac{3}{11}+\frac{8}{11}=1\)
c) 5x + 2 . 5x + 23 = 83
5x . ( 1 + 2 ) + 8 = 83
5x . 3 = 83 - 8
5x . 3 = 75
5x = 75 : 3
5x = 25
\(\Rightarrow\)5x = 52
\(\Rightarrow\)x = 2
2.
Ta thấy \(2016^{2016}>2016^{2016}-3\)
\(\Rightarrow B=\frac{2016^{2016}}{2016^{2016}-3}>\frac{2016^{2016}+2}{2016^{2016}-3+2}=\frac{2016^{2016}+2}{2016^{2016}-1}=A\)
\(\Rightarrow A< B\)
a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{98}{99}\)
Ta có \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{98}{99}\)
= \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{98}{99}\)(áp dụng công thức)
= \(1-\frac{1}{x+1}=\frac{98}{99}\)
= \(\frac{1}{x+1}=1-\frac{98}{99}\)(quy tắc tìm số trừ)
= \(\frac{1}{x+1}=\frac{1}{99}\Rightarrow\frac{1}{x+1}=\frac{1}{98+1}\Rightarrow x=98\)
Vậy x = 98 :)
Còn nữa, công thức mà mình áp dụng là: \(\frac{a}{b.c}=\frac{1}{b}-\frac{1}{c}\)nếu \(a=c-b\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}=1-\frac{1}{10}=\frac{9}{10}\)
\(B=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\)
\(B=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(B=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)
\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{99.100}\)
\(B=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)
\(B=\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{100}\right)\)
\(B=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(B=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{25}\right)\)
\(B=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+....+\frac{1}{100}=A\)
=>A/B=1
a: =1/2-1/3+1/3-1/4+...+1/99-1/100
=1/2-1/100=49/100
b; =5/3(1-1/4+1/4-1/7+...+1/100-1/103)
=5/3*102/103
=510/309=170/103
c: =1/2(1/3-1/5+1/5-1/7+...+1/49-1/51)
=1/2*16/51=8/51
Ta có:A = 1/1.2 + 1/2.3 + 1/3.4 + ...+ 1/2020.2021
A=1-1/2+1/2-1/3+1/3-1/4+...+1/2020-1/2021
A=1-1/2021
Ta có: B = 1/6 + 1/12 + 1/20 + ... + 1/240
B=1/2.3+1/3.4+1/4.5+....+1/15.16
B=1/2-1/3+1/3-1/4+1/4-1/5+....+1/15-1/16
B=1/2-1/16
phần C bn có đánh nhầm đề bài ko