Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
a: \(=\left(2x^2-xy\right)+\left(2xz-yz\right)\)
\(=x\left(2x-y\right)+z\left(x-2y\right)=\left(x-2y\right)\left(x+z\right)\)
b: \(=\left(x^2-4y^2\right)-\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x+2y-1\right)\)
c: \(=\left(y^2+10y+25\right)-9z^2\)
\(=\left(y+5\right)^2-\left(3z\right)^2\)
\(=\left(y+5+3z\right)\left(y+5-3z\right)\)
d: \(=\left(x+2y\right)^3-\left(x-2y\right)\left(x+2y\right)\)
\(=\left(x+2y\right)\left[\left(x+2y\right)^2-\left(x-2y\right)\right]\)
\(=\left(x+2y\right)\left(x^2+4xy+4y^2-x+2y\right)\)
1:
a: \(x\left(3-4x\right)+5\left(3-4x\right)=\left(3-4x\right)\left(x+5\right)\)
b: \(2y\left(5y-6\right)-4\left(6-5y\right)\)
\(=2y\left(5y-6\right)+4\left(5y-6\right)\)
\(=2\left(5y-6\right)\left(y+2\right)\)
c: \(=27\left(x-2\right)^3-3x\left(x-2\right)^2\)
\(=3\left(x-2\right)^2\cdot\left[9\left(x-2\right)-x\right]\)
\(=3\left(x-2\right)^2\left(8x-18\right)=6\left(x-2\right)^2\cdot\left(4x-9\right)\)
d: \(=6y\left(x-y\right)\left(x+y\right)-8y\left(x+y\right)^2\)
\(=2y\left(x+y\right)\left[3\left(x-y\right)-4\left(x+y\right)\right]\)
\(=2y\left(x+y\right)\left(3x-3y-4x-4y\right)\)
\(=2y\left(x+y\right)\left(-x-7y\right)\)
Bài 1
a) x(3 - 4x) + 5(3 - 4x)
= (3 - 4x)(x + 5)
b) 2y(5y - 6) - 4(6- 5y)
= 2y(5y - 6) + 4(5y - 6)
= (5y - 6)(2y + 4)
= 2(5y - 6)(y + 2)
c) 27(x - 2)³ - 3x(2 - x)²
= 27(x - 2)³ - 3x(x - 2)²
= 3(x - 2)²[9(x - 2) - x]
= 3(x - 2)²(9x - 18 - x)
= 3(x - 2)²(8x - 18)
= 6(x - 2)²(4x - 9)
d) 6y(x² - y²) - 8y(x + y)²
= 6y(x - y)(x + y) - 8y(x + y)²
= 2y(x + y)[3(x - y) - 4(x + y)]
= 2y(x + y)(3x - 3y - 4x - 4y)
= 2y(x + y)(-x - 7y)
= -2y(x + y)(x + 7y)
Lời giải:
Những bài này sử dụng những hằng đẳng thức đáng nhớ.
Vì $x=-2$ nên $x+2=0$. Ta có:
\(A=(2x-3)^2-(x-3)^3+(4x+1)[(4x)^2-4x.1+1^2]\)
\(=(2x-3)^2-(x-3)^3+(4x)^3+1^3\)
\(=[2(x+2)-7]^2-(x+2-5)^3+8x^3+1\)
\(=(-7)^2-(-5)^3+8.(-2)^3+1=111\)
--------------------
\(B=(3x-y)^3-[x^3+(2y)^3]+(x+3)^2\)
\(=(3.1-2)^3-(1^3+8.2^3)+(1+3)^2=-48\)
----------------
Vì $x=\frac{1}{2}; y=\frac{-1}{2}\Rightarrow x+y=0$
\(C=(x-5y)^2+(2x-3y)^3-(x-y)^3-[(2x)^3+(3y)^3]\)
\(=(x+y-6y)^2+[2(x+y)-5y]^3-(x+y-2y)^3-[8(x^3+y^3)+19y^3]\)
\(=(-6y)^2+(-5y)^3-(-2y)^3-19y^3\)
\(=36y^2-136y^3=36.(\frac{-1}{2})^2-136(\frac{-1}{2})^3=26\)
\(B=2-\left(2x^2+y^2+2xy-4x-2y\right)\)
\(B=2-\left[\left(x^2+y^2+2xy-2x-2y+1\right)+\left(x^2-2x+1\right)\right]\)
\(B=4-\left(x-1\right)^2-\left(x+y-1\right)^2\le0\)
GTLN B =4 khi x= 1 ; y =0
\(C=\sqrt{3}-\left(16x^2-8x\right)=\sqrt{3}+1-\left(4x-1\right)^2\le\sqrt{3}+1\)
ki x =1/4
\(N=\left(4x+1\right)\left(16x^2-4x+1\right)-\left(4x-1\right)^3-3x\left(16x-4\right)\)
\(=64x^3+1-64x^3+48x^2-12x+1-48x^2+12x\)
= 2
Vậy biểu thức N ko phụ thuộc vào biến
Lời giải:
\(N=(4x+1)(16x^2-4x+1)-(4x-1)^3-3x(16x-4)\)
\(=(4x+1)(16x^2-4x+1)-[(4x-1)^3+12x(4x-1)]\)
\(=(4x+1)(16x^2-4x+1)-(4x-1)[(4x-1)^2+12x]\)
\(=(4x+1)(16x^2-4x+1)-(4x-1)(16x^2+4x+1)\)
\(=(4x+1)(16x^2+4x+1-8x)-(4x-1)(16x^2+4x+1)\)
\(=(16x^2+4x+1)[(4x+1)-(4x-1)]-8x(4x+1)\)
\(=2(16x^2+4x+1)-8x(4x+1)\)
\(=2\)
Vậy giá trị của biểu thức không phụ thuộc vào biến.
\(1.\left(x-5\right)\left(x+5\right)-\left(x+4\right)^2+\left(4x+1\right)^3=\left(4x+2\right)\left(16x^2-8x+4\right)+12x\left(4x-1\right)\)⇔ \(x^2-25-x^2-8x-16+64x^3+48x^2+12x+1=64x^3+8+48x^2-12x\)⇔ \(16x-48=0\)
⇔ \(x=3\)
KL..........
16x\((\dfrac{-1}{4}x+\dfrac{4}{5}y)^2\)=16x\(\left(\dfrac{1}{16}x^2+\dfrac{-2}{5}xy+\dfrac{16}{25}y^2\right)=x^3-\dfrac{32}{5}x^2y+\dfrac{256}{25}xy^2\)