Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{7}{6}\) + \(\dfrac{5}{12}\) - \(\dfrac{1}{18}\) - 1
= \(\dfrac{42}{36}\) + \(\dfrac{15}{36}\) - \(\dfrac{2}{36}\) - \(\dfrac{36}{36}\)
= \(\dfrac{19}{36}\)
\(\dfrac{13}{6}\) + \(\dfrac{5}{18}+3-\dfrac{7}{12}\)
= \(\dfrac{78}{36}+\dfrac{10}{36}+\dfrac{108}{36}-\dfrac{21}{36}\)
= \(\dfrac{175}{36}\)
3 + \(\dfrac{11}{4}-\dfrac{1}{12}-\dfrac{3}{16}\)
= \(\dfrac{144}{48}+\dfrac{132}{48}-\dfrac{4}{48}-\dfrac{9}{48}\)
= \(\dfrac{263}{48}\)
\(\dfrac{2}{5}\) x \(\dfrac{7}{4}\) - \(\dfrac{2}{5}\) x \(\dfrac{3}{4}\)
= \(\dfrac{2}{5}\) x ( \(\dfrac{7}{4}\) - \(\dfrac{3}{4}\))
= \(\dfrac{2}{5}\) x \(\dfrac{4}{4}\)
= \(\dfrac{2}{5}\)
\(\frac{2}{5}\times\frac{3}{8}+\frac{3}{4}=\frac{2\times3}{5\times8}+\frac{3}{4}=\frac{1\times3}{5\times4}+\frac{3}{4}=\frac{3}{20}+\frac{3}{4}=\frac{3}{20}+\frac{15}{20}=\frac{18}{20}=\frac{9}{10}\)
\(\frac{2}{5}+\frac{3}{8}\times\frac{3}{4}=\frac{2}{5}+\frac{9}{32}=\frac{64}{160}+\frac{45}{160}=\frac{109}{160}\)
Hai bài kia tương tự
\(\dfrac{1}{2}\times\dfrac{3}{4}:\dfrac{6}{5}=\dfrac{3}{8}:\dfrac{6}{5}=\dfrac{5}{16}\)
\(\dfrac{2}{3}+\dfrac{1}{6}:\dfrac{7}{12}=\dfrac{2}{3}+\dfrac{2}{7}=\dfrac{14}{21}+\dfrac{6}{21}=\dfrac{20}{21}\)
\(8\times\dfrac{3}{5}:\dfrac{12}{5}=\dfrac{24}{5}:\dfrac{12}{5}=2\)
\(\dfrac{4}{9}+\dfrac{3}{4}-\dfrac{1}{3}=\dfrac{16}{36}+\dfrac{27}{36}-\dfrac{12}{36}=\dfrac{31}{36}\)
a: =5-7/19
=95/19-7/19
=88/19
b: =1/2(3/4+1/4)=1/2
c: =26/7(11/3-8/3)
=26/7
a: \(=\dfrac{1}{2}\cdot\dfrac{3}{4}\cdot\dfrac{5}{6}=\dfrac{15}{48}=\dfrac{5}{16}\)
b: \(=\dfrac{2}{3}+\dfrac{12}{42}=\dfrac{2}{3}+\dfrac{2}{7}=\dfrac{20}{21}\)
c: \(=\dfrac{24}{5}\cdot\dfrac{5}{12}=2\)
d: \(=\dfrac{1}{9}+\dfrac{3}{4}=\dfrac{4+27}{36}=\dfrac{31}{36}\)
Bài giải
a, \(\frac{4}{5}-\frac{2}{3}+\frac{1}{5}-\frac{1}{3}\)
\(=\left(\frac{4}{5}+\frac{1}{5}\right)-\left(\frac{2}{3}+\frac{1}{3}\right)=1-1=0\)
b, \(\frac{2}{5}\text{ x }\frac{7}{4}-\frac{2}{5}\text{ x }\frac{3}{7}\)
\(=\frac{2}{5}\text{ x }\left(\frac{7}{4}-\frac{3}{7}\right)=\frac{2}{5}\text{ x }\frac{37}{28}=\frac{37}{70}\)
c, \(\frac{13}{4}\text{ x }\frac{2}{3}\text{ x }\frac{4}{13}\text{ x }\frac{3}{12}=\frac{13\text{ x }2\text{ x }4\text{ x }3}{4\text{ x }3\text{ x }13\text{ x }12}=\frac{1}{6}\)
d, \(\frac{75}{100}+\frac{18}{21}+\frac{19}{32}+\frac{1}{4}+\frac{3}{21}+\frac{13}{32}\)
\(=\frac{3}{4}+\frac{18}{21}+\frac{19}{32}+\frac{1}{4}+\frac{3}{21}+\frac{13}{32}\)
\(=\left(\frac{3}{4}+\frac{1}{4}\right)+\left(\frac{18}{21}+\frac{3}{21}\right)+\left(\frac{19}{32}+\frac{13}{32}\right)\)
\(=1+1+1\)
\(=3\)
e, \(\frac{2}{5}+\frac{6}{9}+\frac{3}{4}+\frac{3}{5}+\frac{1}{3}+\frac{1}{4}\)
\(=\frac{2}{5}+\frac{2}{3}+\frac{3}{4}+\frac{3}{5}+\frac{1}{3}+\frac{1}{4}\)
\(=\frac{1}{5}\left(2+3\right)+\frac{1}{3}\left(2+1\right)+\frac{1}{4}\left(3+1\right)\)
\(=\frac{1}{5}\cdot5+\frac{1}{3}\cdot3+\frac{1}{4}\cdot4\)
\(=1+1+1\)
\(=3\)
a, \(\frac{4}{5}-\frac{2}{3}+\frac{1}{5}-\frac{1}{3}\)
\(=\left(\frac{4}{5}+\frac{1}{5}\right)-\left(\frac{2}{3}+\frac{1}{3}\right)=1-1=0\)
b, \(\frac{2}{5}\text{ x }\frac{7}{4}-\frac{2}{5}\text{ x }\frac{3}{7}\)
\(=\frac{2}{5}\text{ x }\left(\frac{7}{4}-\frac{3}{7}\right)=\frac{2}{5}\text{ x }\frac{37}{28}=\frac{37}{70}\)
c, \(\frac{13}{4}\text{ x }\frac{2}{3}\text{ x }\frac{4}{13}\text{ x }\frac{3}{12}=\frac{13\text{ x }2\text{ x }4\text{ x }3}{4\text{ x }3\text{ x }13\text{ x }12}=\frac{1}{6}\)
d, \(\frac{75}{100}+\frac{18}{21}+\frac{19}{32}+\frac{1}{4}+\frac{3}{21}+\frac{13}{32}\)
\(=\frac{3}{4}+\frac{18}{21}+\frac{19}{32}+\frac{1}{4}+\frac{3}{21}+\frac{13}{32}\)
\(=\left(\frac{3}{4}+\frac{1}{4}\right)+\left(\frac{18}{21}+\frac{3}{21}\right)+\left(\frac{19}{32}+\frac{13}{32}\right)\)
\(=1+1+1\)
\(=3\)
e, \(\frac{2}{5}+\frac{6}{9}+\frac{3}{4}+\frac{3}{5}+\frac{1}{3}+\frac{1}{4}\)
\(=\frac{2}{5}+\frac{2}{3}+\frac{3}{4}+\frac{3}{5}+\frac{1}{3}+\frac{1}{4}\)
\(=\frac{1}{5}\left(2+3\right)+\frac{1}{3}\left(2+1\right)+\frac{1}{4}\left(3+1\right)\)
\(=\frac{1}{5}\cdot5+\frac{1}{3}\cdot3+\frac{1}{4}\cdot4\)
\(=1+1+1\)
\(=3\)
1/5x3/4-1/2x3/5
=3/20-3/10
=-3/20
Ai k mik mik k lại