Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{132}\)
\(B=\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{11\cdot12}\)
\(B=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{12}\)
\(B=\frac{1}{4}-\frac{1}{12}\)
\(B=\frac{1}{6}\)
1-1/2+1/2-1/3+1/3+1/4-1/4+1/5-1/5+1/6-1/6+1/7-1/7+1/8-1/8+1/9-1/9+1/10-(1-1/3+1/3-3/5+3/5-4/7+5/9-5/9+6/11-6/11-7/13)=1+1/10-1+7/13=83/130
A = \(-\dfrac{1}{20}\) + \(\dfrac{-1}{30}\) + \(\dfrac{-1}{42}\) + \(\dfrac{-1}{56}\) + \(\dfrac{-1}{72}\) + \(\dfrac{-1}{90}\)
A = - ( \(\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\))
A = - ( \(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\))
A = - ( \(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\))
A = - (\(\dfrac{1}{4}-\dfrac{1}{10}\))
A = - \(\dfrac{3}{20}\)
D=\(-\dfrac{1}{4.5}\)+(\(-\dfrac{1}{5.6}\))+(\(-\dfrac{1}{6.7}\))+(\(-\dfrac{1}{7.8}\))+(\(-\dfrac{1}{8.9}\))+(\(-\dfrac{1}{9.10}\))
D=\(-\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\right)\)
D=\(-\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right)\)
D=\(-\left(\dfrac{1}{4}-\dfrac{1}{10}\right)\)
D=\(-\dfrac{3}{20}\)
1/20 + 1/30 + 1/42 + ... + 1/156
= 1/4.5 + 1/5.6 + 1/6.7 + .... + 1/12.13
= 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + ... + 1/12 - 1/13
= 1/4 - 1/13
= 9/52
1/20 + 1/30 + 1/42 + ... + 1/156
= 1/4.5 + 1/5.6 + 1/6.7 + .... + 1/12.13
= 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + ... + 1/12 - 1/13
= 1/4 - 1/13
= 9/52
A= 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72 + 1/90
=1/(1.2)+1/(2.3)+1/(3.4)+1/(4.5) +1/(5.6)+1/(6.7)+1/(7.8) +1/(8.9)+1/(9.10)
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5.+1/5-1/6... +1/9-1/10
=1-1/10
=9/10
\(S1=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\)
\(S1=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}\)
\(S1=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(S1=1-\frac{1}{10}\)
\(S1=\frac{9}{10}\)
CHÚC BN HC GIỎI !!!!!!!!!! TỨ DIỆP THẢO
S=\(\frac{1}{1.2}+\frac{1}{2.3}+...............+\frac{1}{9.10}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...............+\frac{1}{9}-\frac{1}{10}\)
=\(1-\frac{1}{10}\)
=\(\frac{9}{10}\)
1/20+1/30+1/42+1/56+1/72+1/90+1/110+1/132
=1/4.5+1/5.6+1/6.7+1/7.8+1/8.9+1/9.10+1/10.11+1/11.12
=1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10+1/11-1/12
=1/4-1/12
=3/12-1/12
=1/6
\(A=\frac{-1}{20}+\frac{-1}{30}+\frac{-1}{42}+\frac{-1}{56}+\frac{-1}{72}+\frac{-1}{90}\)
\(A=\frac{-1}{4.5}+\frac{-1}{5.6}+\frac{-1}{6.7}+\frac{-1}{7.8}+\frac{-1}{8.9}+\frac{-1}{9.10}\)
\(-1A=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)
\(-1A=\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(-1A=\frac{1}{4}-\frac{1}{10}\)
\(-1A=\frac{3}{20}\)
\(A=\frac{-3}{20}\)
\(\frac{-1}{20}+\frac{-1}{30}+\frac{-1}{42}+\frac{-1}{56}+\frac{-1}{72}+\frac{-1}{90}\)
=\(\frac{-1}{4.5}+\frac{-1}{5.6}+\frac{-1}{6.7}+\frac{-1}{7.8}+\frac{-1}{8.9}+\frac{-1}{9.10}\)
=\(\frac{-1}{4}-\frac{-1}{5}_{ }+\frac{-1}{5}-\frac{-1}{6}+\frac{-1}{6}-\frac{-1}{7}+\frac{-1}{7}-\frac{-1}{8}+\frac{-1}{8}-\frac{-1}{9}+\frac{-1}{9}-\frac{-1}{10}\)
=\(\frac{-1}{4}+\frac{1}{5}+\frac{-1}{5}+\frac{1}{6}+\frac{-1}{6}+\frac{1}{7}+\frac{-1}{7}+\frac{1}{8}+\frac{-1}{8}+\frac{1}{9}+\frac{-1}{9}+\frac{1}{10}\)
=\(\frac{-1}{4}+\frac{1}{10}\)
=\(\frac{-3}{20}\)
\(\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+...+\frac{1}{9900}\)
\(=\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+....+\frac{1}{99.100}\)
\(=\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+......+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{7}-\frac{1}{100}\)
\(=\frac{93}{100}\)
\(\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+...+\frac{1}{9900}\)
\(=\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+...+\frac{1}{99.100}\)
\(=\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{7}-\frac{1}{100}=\frac{93}{700}\)