Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`(a+5)xx[(140/a)-1]=150`
`<=>(a+5).((140-a)/a)=150`
`<=>(a+5)(140-a)=150a`
`<=>140a-a^2+700-5a=150`
`<=>700+135a-a^2=150`
`<=>a^2-15a-700=0`
`Delta=225+2800=3025`
`<=>a_1=35,a_2=-20`
Vậy `S={35,-20}`.
\(\dfrac{140}{x}+5=\dfrac{\left(140+10\right)}{x-1}\left(x\ne0,x\ne1\right)\)
\(\Leftrightarrow\dfrac{140+5x}{x}=\dfrac{150}{x-1}\)
\(\Leftrightarrow\left(x-1\right)\cdot\left(140+5x\right)=150x\)
\(\Leftrightarrow140x+5x^2-140-5x-150x=0\)
\(\Leftrightarrow5x^2-15x-140=0\)
\(\Leftrightarrow x^2-3x-28=0\)
\(\Leftrightarrow\left(x-7\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\left(N\right)\\x=-4\left(N\right)\end{matrix}\right.\)
\(S=\left\{7,-4\right\}\)
ĐK: `x \ne 0 ; x \ne -1`
`140/x+5=150/(x-1)`
`<=>(140+5x)/x=150/(x-1)`
`<=>(140x+5x)(x-1)=150x`
`<=>5x^2+135x-140=150x`
`<=>5x^2-15x-140=0`
`<=>` \(\left[{}\begin{matrix}x=7\\x=-4\end{matrix}\right.\)
Vậy...
Ta có: x + y = 140 => x = 180 - y
Thay x = 180 - y vào x - x/8 = y + 8/x ta đc:
\(180-y-\frac{180-y}{8}=y+\frac{8}{180-y}\)
\(\Rightarrow\left(180-y\right)\left(180-y\right).8-\left(180-y\right)\left(180-y\right)=8y\left(180-y\right)+8.8\)
\(\Rightarrow\left(180-y\right)^2.8-\left(180-y\right)^2=8y\left(180-y\right)+64\)
\(\Rightarrow\left(32400-360y+y^2\right).8-\left(32400-360y+y^2\right)=1440y-8y^2+64\)
\(\Rightarrow259200-2880y+8y^2-32400+360y-y^2-1440y+8y^2-64=0\)
\(\Rightarrow15y^2-3960y+226736=0\)
\(\Rightarrow y=180\) hoặc y = 84
Khi y = 180 => x = 0
Khi y = 84 => x = 96
a/ đề \(=\frac{\sqrt{x}}{\sqrt{x}-5}-\frac{10\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}-\frac{5}{\sqrt{x}+5}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+5\right)-10\sqrt{x}-5\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)
\(=\frac{x+5\sqrt{x}-10\sqrt{x}-5\sqrt{x}+25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}=\frac{x-10\sqrt{x}+25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)
\(=\frac{\left(\sqrt{x}-5\right)^2}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}=\frac{\sqrt{x}-5}{\sqrt{x}+5}\)
b/ đề \(=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}-1\right)-\left(6\sqrt{x}-4\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
c/ đề \(=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}-\frac{3-11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)-\left(3-11\sqrt{x}\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{2x-6\sqrt{x}+x+4\sqrt{x}+3-3+11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{3x+9\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{3\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{3\sqrt{x}}{\sqrt{x}-3}\)
giải phương trình$\sqrt{x}+\sqrt{1-x}+2\sqrt{x-x^2}-2\sqrt[4]{x-x^2}=1$√x+√1−x+2√x−x2−24√x−x2=1$\sqrt{x^2+10x+7}=3\sqrt{x+3}+2\sqrt{x+7}-6$√x2+10x+7=3√x+3+2√x+7−6$\sqrt[3]{x+1}+\sqrt[3]{x+2}=1+\sqrt[3]{x-3x+12}$3√x+1+3√x+2=1+3√x−3x+12$\left(4x+2\right)\sqrt{x+8}=3x^2+7x+8$(4x+2)√x+8=3x2+7x+8$x+4\sqrt{5-x}=4\sqrt{x-1}+\sqrt{-x^2+6x-5}+1$x+
ải phương trình
$\sqrt{x}+\sqrt{1-x}+2\sqrt{x-x^2}-2\sqrt[4]{x-x^2}=1$√x+√1−x+2√x−x2−24√x−x2=1
4√5−x=4√x−1+√−x2+6x−5+1
a)Đặt \(\frac{1}{x-1}=t;\frac{1}{y-1}=m\)
Ta có: \(\frac{5}{x-1}+\frac{1}{y-1}=10=5.\frac{1}{x-1}+\frac{1}{y-1}=10=5t+m=10\)
\(\frac{1}{x-1}+\frac{3}{y-1}=t+3.\frac{1}{y-1}=t+3m=18\)
Từ đây ta có HPT \(\hept{\begin{cases}5t+m=10\left(1\right)\\t+3m=18\left(2\right)\end{cases}}\)
\(5t+m=10\Rightarrow5t=10-m\Rightarrow t=\frac{10-m}{5}\),thay vào (2) ta có:
\(\frac{10-m}{5}+3m=18\Rightarrow\frac{10-m+15m}{5}=18\Rightarrow\frac{10+14m}{5}=18\)
=>10+14m=18.5=90=>14m=90-10=>14m=80=>m=\(\frac{40}{7}\)
Thay m=40/7 vào (1)=>t=6/7
Vì \(\frac{1}{x-1}=t\Rightarrow\frac{1}{x-1}=\frac{6}{7}\Rightarrow\left(x-1\right).6=7\Rightarrow6x-6=7\Rightarrow x=\frac{13}{6}\)
Vì \(\frac{1}{y-1}=m\Rightarrow\frac{1}{y-1}=\frac{40}{7}\Rightarrow\left(y-1\right).40=7\Rightarrow40y-40=7\Rightarrow y=\frac{47}{40}\)
Vậy x=13/6;y=47/40 thì thỏa mãn HPT
mk hết hè lên lp 8 nên cũng không chắc 100% nhé
b/ Đặt \(\frac{1}{x+2y}=a\) ; \(\frac{1}{x-2y}=b\) , ta có hệ phương trình: \(\hept{\begin{cases}4a-b=1\\20a+3b=1\end{cases}\Rightarrow\hept{\begin{cases}b=4a-1\\20a+3\left(4a-1\right)=1\end{cases}\Rightarrow}\hept{\begin{cases}b=4a-1\\20a+12a-3=1\end{cases}}\Rightarrow\hept{\begin{cases}b=4a-1\\a=\frac{1}{8}\end{cases}\Rightarrow}\hept{\begin{cases}b=-\frac{1}{2}\\a=\frac{1}{8}\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{x-2y}=-\frac{1}{2}\\\frac{1}{x+2y}=\frac{1}{8}\end{cases}\Rightarrow\hept{\begin{cases}x-2y=-2\\x+2y=8\end{cases}\Rightarrow}\hept{\begin{cases}x=-2+2y\\-2+2y+2y=8\end{cases}\Rightarrow}\hept{\begin{cases}x=-2+2y\\y=\frac{5}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x=3\\y=\frac{5}{2}\end{cases}}}\)
Vậy x = 3 , y = 5/2
c/ Đặt \(\frac{1}{x-3}=a\) ; \(\frac{1}{y+2}=b\) , ta có hệ phương trình:
\(\hept{\begin{cases}12a-5b=63\\8a+15b=-13\end{cases}\Rightarrow\hept{\begin{cases}b=\frac{12a-63}{5}\\8a+15\left(\frac{12a-63}{5}\right)=-13\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}b=\frac{12a-63}{5}\\8a+\frac{180a-945}{5}=-13\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}b=\frac{12a-63}{5}\\a=4\end{cases}\Rightarrow\hept{\begin{cases}b=-3\\a=4\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}\frac{1}{y+2}=-3\\\frac{1}{x-3}=4\end{cases}\Rightarrow\hept{\begin{cases}-3y-6=1\\4x-12=1\end{cases}}\Rightarrow\hept{\begin{cases}y=-\frac{7}{3}\\x=\frac{13}{4}\end{cases}}}\)
Vậy x = 13/4 , y = -7/3
d/ Đặt \(\frac{1}{x+y-3}=a\) ; \(\frac{1}{x-y+1}=b\) , ta có hệ phương trình:
\(\hept{\begin{cases}5a-2b=8\\3a+b=1,5\end{cases}\Rightarrow\hept{\begin{cases}5a-2\left(\frac{3}{2}-3a\right)=8\\b=\frac{3}{2}-3a\end{cases}\Rightarrow}\hept{\begin{cases}5a-3+6a=8\\b=\frac{3}{2}-3a\end{cases}\Rightarrow}\hept{\begin{cases}a=1\\b=-\frac{3}{2}\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{x+y-3}=1\\\frac{1}{x-y+1}=-\frac{3}{2}\end{cases}\Rightarrow\hept{\begin{cases}x+y-3=0\\-3x+3y-3=2\end{cases}\Rightarrow}\hept{\begin{cases}x+y=3\\-3x+3y=5\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x=3-y\\-3\left(3-y\right)+3y=5\end{cases}\Rightarrow\hept{\begin{cases}x=3-y\\-9+3y+3y=5\end{cases}\Rightarrow}\hept{\begin{cases}x=3-y\\y=\frac{7}{3}\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{2}{3}\\y=\frac{7}{3}\end{cases}}}\)
Vậy x = 2/3 ; y = 7/3
=>\(\dfrac{140x+700-150x}{x\left(x+5\right)}=1\)
=>x^2+5x=-10x+700
=>x^2+15x-700=0
=>(x+35)(x-20)=0
=>x=20 hoặc x=-35