Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`@` `\text {Ans}`
`\downarrow`
`a)`
`3x(4x-1) - 2x(6x-3) = 30`
`=> 12x^2 - 3x - 12x^2 + 6x = 30`
`=> 3x = 30`
`=> x = 30 \div 3`
`=> x=10`
Vậy, `x=10`
`b)`
`2x(3-2x) + 2x(2x-1) = 15`
`=> 6x- 4x^2 + 4x^2 - 2x = 15`
`=> 4x = 15`
`=> x = 15/4`
Vậy, `x=15/4`
`c)`
`(5x-2)(4x-1) + (10x+3)(2x-1) = 1`
`=> 5x(4x-1) - 2(4x-1) + 10x(2x-1) + 3(2x-1)=1`
`=> 20x^2-5x - 8x + 2 + 20x^2 - 10x +6x - 3 =1`
`=> 40x^2 -17x - 1 = 1`
`d)`
`(x+2)(x+2)-(x-3)(x+1)=9`
`=> x^2 + 2x + 2x + 4 - x^2 - x + 3x + 3=9`
`=> 6x + 7 =9`
`=> 6x = 2`
`=> x=2/6 =1/3`
Vậy, `x=1/3`
`e)`
`(4x+1)(6x-3) = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + 24x^2 +11x - 18`
`=> 24x^2 - 6x - 3 = 24x^2 + 18x -11`
`=> 24x^2 - 6x - 3 - 24x^2 + 18x + 11 = 0`
`=> 12x +8 = 0`
`=> 12x = -8`
`=> x= -8/12 = -2/3`
Vậy, `x=-2/3`
`g)`
`(10x+2)(4x- 1)- (8x -3)(5x+2) =14`
`=> 40x^2 - 10x + 8x - 2 - 40x^2 - 16x + 15x + 6 = 14`
`=> -3x + 4 =14`
`=> -3x = 10`
`=> x= - 10/3`
Vậy, `x=-10/3`
a) \(\text{}/3x-5/-\frac{1}{7}=\frac{1}{3}\) b)\(\left(\frac{3}{5}x-\frac{2}{3}x-x\right).\frac{1}{7}=\frac{-5}{21}\)
\(/3x-5/=\frac{10}{21}\) \([x.\left(\frac{3}{5}-\frac{2}{3}-1\right)]=\frac{-5}{21}.7\)
\(\Rightarrow3x-5=\frac{10}{21}hay3x-5=\frac{-10}{21}\) \(\left[x.\frac{-16}{15}\right]=\frac{-5}{3}\)
\(3x=\frac{115}{21}\) \(3x=\frac{95}{21}\) \(x=\frac{25}{16}\)
\(x=\frac{115}{63}\) \(x=\frac{95}{63}\) Vậy x = \(\frac{25}{16}\)
Vậy x \(\in\left\{\frac{115}{63};\frac{95}{63}\right\}\)
(4x - 9) (2,5 + 2/3x)=0
=> 4x-9 = 0 hoặc 2,5 +2/3x = 0
=> 4x = 9 hoặc 2/3x = -2,5
=> x = 9/4 hoặc x = -7,5/2
kết luận : vậy x thuộc {9/4; -7,5/2}
(x - 5)2 = ( 1 - 3x)2
=> x-5 = 1-3x
=> x-5+3x = 1
=>4x-5 =1
=> 4x=6
=> x=3/2
|x|=3
=> X=3 hoặc x=-3
3| x+1| - 2=1
=> 3lx+1l = 3
=> lx+1l =1
=> x+1 = 1 hoặc x+1= -1
=> x=0 hoặc x = -2
3|x + 1| + 2=1
=> 3lx+1l = -1
=> lx+1l = -1/3
vô lý vì giá trị tuyệt đối của 1 số luôn luôn lớn hơn hoặc bằng 0
=> x thuộc rỗng
Đăng ít một thôi bạn :v
a) 3x - (3 - 2x) = 0
3x - 3 + 2x = 0
5x - 3 = 0
5x = 0 + 3
5x = 3
x = 3/5
b) (x + 2).3 - 4x.3 = 0
3.(x + 2) - 12.x = 0
3[x + 2 - (4x)] = 0
x + 2 - 4 = 0
-3x + 2 = 0
-3x = 0 - 2
-3x = -2
x = 2/3
c) (x - 2)(x - 4)(1 - 7x) = 0
x - 2 = 0 hoặc x - 4 = 0 hoặc 1 - 7x = 0
x = 0 + 2 x = 0 + 4 -7x = 0 - 1
x = 2 x = 4 -7x = -1
x = 1/7
d) 4x2 - 1/4 = 0
4x2 = 0 + 1/4
4x2 = 1/4
x2 = 1/4 : 4
x2 = 1/16
x2 = (1/4)2
x = 1/4 hoặc x = -1/4
e) -3x2 + 48 = 0
3x2 - 48 = 0
3x2 = 0 + 48
3x2 = 48
x2 = 48 : 3
x2 = 16
x2 = 42
x = 4 hoặc x = -4
g) 3(1/2 - 1/3x)3 - 1/9 = 0
3(1/2 - x/3)3 - 1/9 = 0
3(1/2 - x/3)3 = 0 + 1/9
3(1/2 - x/3)3 = 1/9
(1/2 - x/3)3 = 1/9 : 3
(1/2 - x/3)3 = 1/27
(1/2 - x/3)3 = (1/3)3
1/2 - x/3 = 1/3
-x/3 = 1/3 - 1/2
-x/3 = -1/6
-x = -1/6.3
-x = -3/6 = -1/2
x = -1/2
m) 4x3 + 5x4 = 0
x3(4 + 5x) = 0
x = 0 hoặc 4 + 5x = 0
x = 0 5x = 0 - 4
5x = -4
x = -4/5
h) -x3 + 1/64x = 0
-x3 + x/64 = 0
x/64 - x3 = 0
x(1/64 - x3) = 0
x = 0 hoặc 1/64 - x2 = 0
x = 0 -x2 = 0 - 1/64
-x2 = -1/64
x2 = 1/64 = -+1/8
k) (x2 + 1)2 + 3x(x2 + 1) + 2 = 0
x4 + 2x2 + 1 + 3x3 + 3x + 2 = 0
x4 + 2x2 + 3 + 3x3 + 3x = 0
(x3 + 2x2 + 3)(x + 1) = 0
Mà x3 + 2x2 + 3 # 0 nên
x + 1 = 0
x = -1
c) \(\left(x-2\right).\left(x-4\right).\left(1-7x\right)\)
Cho \(\left(x-2\right).\left(x-4\right).\left(1-7x\right)=0\)
⇔ \(\left[{}\begin{matrix}x-2=0\\x-4=0\\1-7x=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=0+2\\x=0+4\\7x=1-0=1\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=2\\x=4\\x=1:7\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=2\\x=4\\x=\frac{1}{7}\end{matrix}\right.\)
Vậy \(x=2;x=4\) và \(x=\frac{1}{7}\) đều là nghiệm của đa thức \(\left(x-2\right).\left(x-4\right).\left(1-7x\right)\)
d) \(4x^2-\frac{1}{4}\)
Cho \(4x^2-\frac{1}{4}=0\)
⇔ \(4x^2=0+\frac{1}{4}\)
⇔ \(4x^2=\frac{1}{4}\)
⇔ \(x^2=\frac{1}{4}:4\)
⇔ \(x^2=\frac{1}{16}\)
=> \(\left[{}\begin{matrix}x=\frac{1}{4}\\x=-\frac{1}{4}\end{matrix}\right.\)
Vậy \(x=\frac{1}{4}\) và \(x=-\frac{1}{4}\) đều là nghiệm của đa thức \(4x^2-\frac{1}{4}.\)
e) \(-3x^2+48\)
Cho \(-3x^2+48=0\)
⇔ \(-3x^2=0-48\)
⇔ \(-3x^2=-48\)
⇔ \(x^2=\left(-48\right):\left(-3\right)\)
⇔ \(x^2=16\)
=> \(\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
Vậy \(x=4\) và \(x=-4\) đều là nghiệm của đa thức \(-3x^2+48.\)
Mình chỉ làm 3 câu thôi nhé.
Chúc bạn học tốt!
\(2\left(3x-2\right)-3\left(x-2\right)=-1\)
\(6x-4-3x+6=-1\)
\(3x+2=-1\)
\(3x=-1-2\)
\(3x=-3\)
\(x=-1\)
\(2\left(3-3x^2\right):3x\left(2x-1\right)=9\)
\(6-6x^2:6x^2-3x=9\)
\(6-x^2-3x=9\)
\(-x^2-3x+6=9\)
\(-x^2-3x=5\)
\(-x\left(x+3\right)=5\)
\(x=-5;x=2\)
a: \(=-4x^2+20x+2x-10=-4x^2+22x-10\)
b: =x^2-9
c: =x^3+27
d: \(=-2x^2-6x+x+3=-2x^2-5x+3\)
e: =8a^3+1
f: =(3-x)(x+1)(x+2)
=(3-x)(x^2+3x+2)
=3x^2+9x+6-x^3-3x^2-2x
=-x^3+7x+6
Mình sẽ trình bày rõ hơn ở (2) nha
Ta có:
\(\frac{2}{x+1}=\frac{3}{2y-3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{2}{x+1}=\frac{3}{2y-3}\) = \(\frac{2-3}{\left(x+1\right)-\left(2y-3\right)}=\frac{-1}{x+1-2y+3}=\frac{-1}{x-2y+4}\)
(Vì trước ngoặc của 2y - 3 là dấu trừ nên khi phá ngoặc thì nó sẽ trở thành dấu cộng.Đây là quy tắc phá ngoặc mà bạn đã được học ở lớp 6 đó)
Ahaha, mình cũng học rồi mà quên mất, cảm giác hiểu ra cái này khó diễn tả thật cậu ạ. Vui chả nói nên lời :))
À quên cảm ơn cậu nhé :^)
\(\frac{1}{3}x.\left(x-2\right)-3x.\left(x+\frac{1}{3}\right)=-9\)
\(\Rightarrow\frac{1}{3}x^2-\frac{2}{3}x-\left(3x^2+x\right)=-9\)
\(\Rightarrow\frac{1}{3}x^2-\frac{2}{3}x-3x^2-x=-9\)
\(\Rightarrow\left(\frac{1}{3}x^2-3x^2\right)-\left(\frac{2}{3}x+x\right)=-9\)
\(\Rightarrow-\frac{8}{3}x^2-\frac{5}{3}x=-9\)
\(\Rightarrow-\frac{8}{3}x^2-\frac{5}{3}x+9=0\)
Chịu.
mặc sịp chưa