\(12\left(k\right)\).\(5\left(k\right)\)=
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2019

pt \(\Leftrightarrow\)\(19k+190=A^2\)\(\Leftrightarrow\)\(k=\frac{A^2-190}{19}\)

Để k nhỏ nhất và \(k\inℕ^∗\) thì \(\frac{A^2-190}{19}=\frac{A^2}{19}-19\) nhỏ nhất và \(A^2>190\)\(\Leftrightarrow\)\(A\ge14\)\(A^2⋮19\)

Mà 19 là số nguyên tố nên để \(\frac{A^2-190}{19}\) nhỏ nhất và \(A^2⋮19\) thì \(A=19\left(tm:A\ge14\right)\)

\(\Rightarrow\)\(k=\frac{A^2-190}{19}=\frac{19^2-190}{19}=9\)

14 tháng 7 2016

k(k+1)(k+2)-(k-1)k(k+1)

=(k+1)(k2+2k)-(k2-k)(k+1)

=(k+1)[(k2+2k)-(k2-k)]

=(k+1)[k2+2k-k2+k]

=(k+1)[(k2-k2)+(2k+k)]

=(k+1)3k (Đpcm)

22 tháng 3 2017

Ta có:

\(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)\\ =k\left(k+1\right)\left[\left(k-2\right)-\left(k-1\right)\right]\\ =k\left(k+1\right)\left[k-2-k+1\right]\\ =k\left(k+1\right)\left\{\left[k+\left(-k\right)\right]+\left(2+1\right)\right\}\\ =k\left(k+1\right).3\\ =3.k\left(k+1\right)\)

Vậy \(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)\\ =3.k.\left(k+1\right)\)

22 tháng 3 2017

Ta có:

\(VT=k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)\)

\(=k\left(k+1\right)\left[\left(k+2\right)-\left(k-1\right)\right]\)

\(=k\left(k+1\right)\left[k+2-k+1\right]\)

\(=k\left(k+1\right)\left[\left(k-k\right)+\left(2+1\right)\right]\)

\(=k\left(k+1\right).3\)

\(=3k\left(k+1\right)\)

\(\Rightarrow VT=VP\)

Vậy với \(k\in N\)* thì ta luôn có:

\(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)=3k\left(k+1\right)\) (Đpcm)

20 tháng 3 2017

k hiểu

15 tháng 10 2019

                                                                Bài giải

Câu F mình làm ở câu trước của bạn rồi nên giờ mình trả lời tiếp luôn nha ! Bài tìm GTLN tí nữa mifh làm cho ! Đang bận !

Câu 1 : Tìm GTNN

\(H=\left|2x+5\right|+\left|8-2x\right|\)

Áp dụng tính chất \(\left|A\right|\ge A\)Ta có :

\(\left|2x+5\right|\ge2x+5\text{ Dấu " = " xảy ra khi }2x+5\ge0\text{ }\Rightarrow\text{ }2x\ge-5\text{ }\Rightarrow\text{ }x\ge-\frac{5}{2}\)

\(\left|8-2x\right|\ge8-2x\text{ Dấu " = " xảy ra khi }8-2x\ge0\text{ }\Rightarrow\text{ }2x\le8\text{ }\Rightarrow\text{ }x\le4\)

\(\Rightarrow\text{ }\left|2x+8\right|+\left|8-2x\right|\ge2x+5+8-2x\)

\(\Rightarrow\text{ }\left|2x+8\right|+\left|8-2x\right|\ge13\text{ Dấu " = " xảy ra khi }-\frac{5}{2}\le x\le4\)

\(\text{Vậy }Min\text{ }H=13\text{ khi }-\frac{5}{2}\le x\le4\)

27 tháng 5 2015

\(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)=k\left(k+1\right)\left[\left(k+2\right)-\left(k-1\right)\right]=3k\left(k+1\right)\)

Công thức tinh tổng là : \(S=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

27 tháng 5 2015

\(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)=k\left(k+1\right)\left(k+2-k+1\right)=3k\left(k+1\right)\left(ĐPCM\right)\)

\(S=1.2+2.3+3.4+...+n\left(n+1\right)\)

3\(S=3\left[1.2+2.3+3.4+...+n\left(n+1\right)\right]\)

\(3S=1.2.3-0.1.2+2.3.4-1.2.3+...+n\left(n+1\right)\left(n+2\right)-\left(n-1\right)n\left(n+1\right)\)

3S=n(n+1)(n+2)

\(S=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

26 tháng 2 2018

\(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)=3k\left(k+1\right)\)

\(VT=\left(k+1\right)\left[k\left(k+2\right)-k\left(k-1\right)\right]=\left(k+1\right)\left(k^2+2k-k^2+k\right)\)

\(=\left(k+1\right).3k=VP\)

4 tháng 8 2016

e,x=0

i,x=2

k,x=0