
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



\(\frac{a}{2}+\frac{b}{3}=\frac{3a+2b}{6}=\frac{a+b}{5}\)
\(\Rightarrow5\left(3a+2b\right)=6\left(a+b\right)\)
\(\Rightarrow15a+10b=6a+6b\)
\(\Rightarrow15a-6a=6b-10b\)
\(\Rightarrow9a=-4b\)\(\Rightarrow\frac{a}{-4}=\frac{b}{9}\)
Vì -4 < 0 ; 9 > 0 \(\Rightarrow\)a và b trái dấu
Vậy không tồn tại stn a, b

Bạn ơi câu b) bạn sai rồi, số nào nhân vs 0 đều = 0 nên đâu cần phải thay nữa đâu

\(\frac{a^4c^3+b^4a^3+c^4b^3}{a^3b^3c^3}\)= \(\frac{b^4c+c^4a+a^4b}{abc}\)
\(\Rightarrow\)\(a^4c^3+b^4a^3+c^4b^3\)= \(b^4c+c^4a+a^4b\)
\(\Rightarrow\)\(a^4\left(c^3-b\right)+b^4\left(a^3-c\right)+c^4\left(b^3-a\right)\)= 0
suy ra c^3 -b = 0 hoặc a^3 -c = 0 hoặc b^3 -a = 0
suy ra đpcm
đặt \(\hept{\begin{cases}x=\frac{a}{b^3}\\y=\frac{b}{c^3}\\z=\frac{c}{a^3}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{1}{x}=\frac{b^3}{a}\\\frac{1}{y}=\frac{c^3}{b}\\\frac{1}{z}=\frac{a^3}{c}\end{cases}}\)khi đó xyz=1
đề bài <=> x+y+z =1/x +1/y +1/z => x+y+z =yz+xz+xy
từ đó => xyz+ (x+y+z) -(xy+yz+xz)-1=0 <=> (x-1)(y-1)(z-1)=0
vây tồn tại x=1 =>a=b^3 (đpcm")

Bài 1:
a) \(\left(\frac{1}{2}\right)^2\) và \(\left(\frac{1}{2}\right)^5\)
Ta có: \(\left(\frac{1}{2}\right)^2=\frac{1}{4}.\)
\(\left(\frac{1}{2}\right)^5=\frac{1}{32}.\)
Vì \(\frac{1}{4}< \frac{1}{32}.\)
=> \(\left(\frac{1}{2}\right)^2< \left(\frac{1}{2}\right)^5.\)
b) \(\left(2,4\right)^3\) và \(\left(2,4\right)^2\)
Ta có: \(\left(2,4\right)^3=13,824.\)
\(\left(2,4\right)^2=5,76.\)
Vì \(13,284>5,76.\)
=> \(\left(2,4\right)^3>\left(2,4\right)^2.\)
c) \(\left(-1\frac{1}{2}\right)^2\) và \(\left(-1\frac{1}{2}\right)^3\)
Ta có: \(\left(-1\frac{1}{2}\right)^2=\left(-\frac{3}{2}\right)^2=\frac{9}{4}.\)
\(\left(-1\frac{1}{2}\right)^3=\left(-\frac{3}{2}\right)^3=-\frac{27}{8}.\)
Vì số dương luôn lớn hơn số âm nên \(\frac{9}{4}>-\frac{27}{8}.\)
=> \(\left(-1\frac{1}{2}\right)^2>\left(-1\frac{1}{2}\right)^3.\)
Chúc bạn học tốt!

a) Ta có: \(\frac{a+2}{a-2}=\frac{b+3}{b-3}.\)
\(\Leftrightarrow\frac{a+2}{b+3}=\frac{a-2}{b-3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a+2}{b+3}=\frac{a-2}{b-3}=\frac{a+2+a-2}{b+3+b-3}=\frac{2a}{2b}=\frac{a}{b}\) (1)
\(\frac{a+2}{b+3}=\frac{a-2}{b-3}=\frac{a}{b}=\frac{4}{6}=\frac{2}{3}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{a}{b}=\frac{2}{3}\)
\(\Rightarrow\frac{a}{2}=\frac{b}{3}\left(đpcm\right).\)
Chúc bạn học tốt!