K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2021

9219321938921839289382983928392839238929832

15 tháng 3 2019

1x2x3x...2018x2019 - 1x2x3x..2018 - 1x2x3x4x...x2017x20182 

= 1x2x3x...x2018x(2019 - 1 - 2018)

= 1x2x3x...x2018x0

= 0

31 tháng 10 2020

2018 A = 2018 - 2018^2 + 2018^3 +...- 2018^2018 + 2018^2019

=> A + 2018 A = 1 +2018^2019

=> 2019 A = 1 + 2018^2019 

=> 2019 A - 1 = 2018^2019 

=> 2019 A -1 là 1 lũy thừa của 2018

Số số hạng là 2017-1+1=2017(số)

Tổng các số từ 1 đến 2017 là: \(\left(2017\right)\cdot\dfrac{\left(2017-1\right)}{2}=2017\cdot1008\)

Tổng là:

\(A=\dfrac{2017\cdot1008}{2018}\simeq1007.5\)

Bài 1

\(\frac{2017}{2018}+\frac{2018}{2019}\)và \(\left(\frac{2017+2018}{2018+2019}\right)\)mk chữa lại đề luôn đó 

Ta tách :

\(\frac{2017}{\left(2018+2019\right)+2018}\)

đến đây ta tách 

\(\frac{2017}{2018+2019}< \frac{2017}{2018}\)

vậy....

mấy câu khác tương tự 

8 tháng 7 2019

2) \(\frac{\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}}{\frac{2}{2003}+\frac{2}{2004}+\frac{2}{2005}}\)

\(\frac{\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}}{2.\frac{1}{2003}+2.\frac{1}{2004}+2.\frac{1}{2005}}\)

=\(\frac{1\left(\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}\right)}{2.\left(\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}\right)}\)

\(\frac{1}{2}\)

3) \(2013+\left(\frac{2013}{1+2}\right)+\left(\frac{2013}{1+2+3}\right)+...+\left(\frac{2013}{1+2+3+...+2012}\right)\)

\(2013.\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2012}\right)\)

\(2013.\left(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{2025078}\right)\)

\(2013.2.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{4050156}\right)\)

=\(4026.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2012.2013}\right)\)

\(4026.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2012}-\frac{1}{2013}\right)\)

\(4026.\left(1-\frac{1}{2013}\right)\)

\(4026.\frac{2012}{2013}\)

=\(4024\)