Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+...+\left(\frac{1}{2}\right)^{20}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{20}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{19}}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{19}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{20}}\right)\)
\(A=1-\frac{1}{2^{20}}\)
\(A=\frac{2^{20}}{2^{20}}-\frac{1}{2^{20}}\)
\(A=\frac{2^{20}-1}{2^{20}}\)
Vậy chọn câu a)
\(A=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{20}\)
\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{20}}\)
\(2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{19}}\)
\(2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{99}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{20}}\right)\)
\(A=1-\dfrac{1}{2^{20}}=\dfrac{2^{20}-1}{2^{20}}\)
Chọn A
=>\(\frac{B}{2^2}\)=\(\frac{1}{2^2}\)\(\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)
=> \(\frac{B}{4}=\frac{1}{4}.A\)
=>A=B
\(B=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{20}\left(1+2+3+...+20\right)\)
\(=1+\frac{1}{2}2.3:2+\frac{1}{3}.3.4:2+...+\frac{1}{20}.20.21:2=\frac{2}{2}+\frac{3}{2}+...+\frac{21}{2}\)
\(=\frac{2+3+4+...+21}{2}=\frac{230}{2}=115\)
B = 1+1/2×(2×3/2)+1/3×(3×4/2)+1/4×(4×5/2)+...+1/20×(20×21/2)=1+3/2+4/2+...+21/2=1/2×(2+3+4+...+21=1/2×(2+3+4+...+21)=1/2×(21×22/2-1)=115
\(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+...+\dfrac{1}{20}\left(1+2+3+...+20\right)\)\(=1+\dfrac{1}{2}.2.3:2+\dfrac{1}{3}.3.4:2+...+\dfrac{1}{20}.20.21:2\)
\(=\dfrac{2}{2}+\dfrac{3}{2}+...+\dfrac{21}{2}\)
\(=\dfrac{2+3+...+21}{2}\)
\(=\dfrac{230}{2}\)
\(=115\)