Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+...+\dfrac{1}{20}\left(1+2+3+...+20\right)\)\(=1+\dfrac{1}{2}.2.3:2+\dfrac{1}{3}.3.4:2+...+\dfrac{1}{20}.20.21:2\)
\(=\dfrac{2}{2}+\dfrac{3}{2}+...+\dfrac{21}{2}\)
\(=\dfrac{2+3+...+21}{2}\)
\(=\dfrac{230}{2}\)
\(=115\)
B = 1+[1/2 (1+2) 2]/2 +[1/3 (1+2+3) 3]/2 +....+ [1/16 (1+2+3+...+20) 16] /2
B = 1+3/2 + 4/2 +...+ 17/2
B = 1/2 (2+3+4+....+17)
B= 1/2 [(2+7)16]/2
B= 76
Nhớ k cho mình nhé :D
\(B=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{20}\left(1+2+3+...+20\right)\)
\(=1+\frac{1}{2}.\frac{2\left(2+1\right)}{2}+\frac{1}{3}.\frac{3\left(3+1\right)}{2}+...+\frac{1}{20}.\frac{20\left(20+1\right)}{2}\)
\(=\frac{2}{2}+\frac{2+1}{2}+\frac{3+1}{2}+...+\frac{20+1}{2}\)
\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+...+\frac{20}{2}\)
\(=\frac{2+3+4+...+20}{2}=\frac{\frac{20\left(20+1\right)}{2}-1}{2}=\frac{209}{2}\)
Xét số hạng tổng quát thứ n (n nguyên và n>1), ta có
1/n(1+2+...+n)=[n(n+1)/2]/n= [n(n+1)]/(2n)
Do đó
B = 1 + 1/2 (1 + 2) + 1/3 (1 + 2 + 3) + 1/4 (1 + 2 + 3 +4) + ...+ 1/20 (1 + 2 +... + 20)
=1 +[2(2+1)]/(2.2) +[3(3+1)]/(2.3) +[4(4+1)]/(2.4) +... +[20(20+1)]/(2.20)
=1+3/2 +4/2 +5/2 +... +21/2
=(2+3+4+5+...+20)/2=104,5 . TICH CHON MINH NHA CAC BAN THI CA NAM SE GAP NHIEU DIEU MAY MAN DAY
Xét số hạng tổng quát thứ n (n nguyên và n>1), ta có
1/n(1+2+...+n)=[n(n+1)/2]/n= [n(n+1)]/(2n)
Do đó
B = 1 + 1/2 (1 + 2) + 1/3 (1 + 2 + 3) + 1/4 (1 + 2 + 3 +4) + ...+ 1/20 (1 + 2 +... + 20)
=1 +[2(2+1)]/(2.2) +[3(3+1)]/(2.3) +[4(4+1)]/(2.4) +... +[20(20+1)]/(2.20)
=1+3/2 +4/2 +5/2 +... +21/2
=(2+3+4+5+...+20)/2=104,5
\(A=\frac{2}{1+2}+\frac{2+3}{1+2+3}+...+\frac{2+3+...+20}{1+2+3+...+20}\)
\(A=\frac{2}{3}+\frac{5}{6}+...+\frac{209}{210}\)
\(A=\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{6}\right)+...+\left(1-\frac{1}{210}\right)\)
\(A=\left(1+1+....+1\right)\left(\frac{1}{3}+\frac{1}{6}+...+\frac{1}{210}\right)\)
\(A=19-\left(\frac{2}{6}+\frac{2}{12}+...+\frac{2}{420}\right)\)
\(A=19-\left(\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{20.21}\right)\)
\(A=19-2\cdot\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{20}-\frac{1}{21}\right)\)
\(A=19-2\cdot\left(\frac{1}{2}-\frac{1}{21}\right)\)
\(A=19-2\cdot\frac{19}{42}=19-\frac{19}{21}=\frac{380}{21}\)
Vậy A= \(\frac{380}{21}\)
\(B=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{2005}\right)\left(1-\frac{1}{2006}\right)\)
\(B=\frac{1}{2}\cdot\frac{2}{3}\cdot...\cdot\frac{2004}{2005}\cdot\frac{2005}{2006}\)
\(B=\frac{1\cdot2\cdot...\cdot2004\cdot2005}{2\cdot3\cdot...\cdot2005\cdot2006}\)
\(B=\frac{1}{2006}\)
Vậy \(B=\frac{1}{2006}\)
\(B=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{20}\left(1+2+3+...+20\right)\)
\(=1+\frac{1}{2}2.3:2+\frac{1}{3}.3.4:2+...+\frac{1}{20}.20.21:2=\frac{2}{2}+\frac{3}{2}+...+\frac{21}{2}\)
\(=\frac{2+3+4+...+21}{2}=\frac{230}{2}=115\)
B = 1+1/2×(2×3/2)+1/3×(3×4/2)+1/4×(4×5/2)+...+1/20×(20×21/2)=1+3/2+4/2+...+21/2=1/2×(2+3+4+...+21=1/2×(2+3+4+...+21)=1/2×(21×22/2-1)=115