Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(S=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{99.100}\right)\)
\(\Rightarrow S=2.\left(1-\frac{1}{100}\right)\)
\(=2.\frac{99}{100}=\frac{99}{50}\)
=2.(1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+.........+\(\frac{1}{99}\)-\(\frac{1}{100}\))
=2.(1-\(\frac{1}{100}\))
S= 2.\(\frac{99}{100}\)
S=\(\frac{99}{50}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
D = \(\dfrac{1}{1.4}\) + \(\dfrac{1}{4.7}\) + \(\dfrac{1}{7.10}\)+...+ \(\dfrac{1}{91.94}\)
D = \(\dfrac{1}{1}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{10}\)+...+ \(\dfrac{1}{91}\) - \(\dfrac{1}{94}\)
D = \(\dfrac{1}{1}\) - \(\dfrac{1}{94}\)
D = \(\dfrac{93}{94}\)
Giả sử ta sẽ vẽ 2 điểm nằm trên một đường thẳng , khi đó ta đếm sẽ có 2 cặp tia đối nhau , hoặc ta vẽ 3 điểm nằm trên một đường thẳng , khi đó ta cũng đếm được 3 cặp tia đối nhau .
=> Ta có công thức : n ( điểm nằm trên cùng 1 đường thẳng ) = n cặp tia đối nhau .
Vậy nếu có 20 điểm cùng nằm trên 1 đường thẳng thì có 20 cặp tia đối trên hình vẽ
bạn vẽ 1 điểm nằm trên một đg thẳng, khi đó ta đếm đc là 1, nếu vẽ 2 đg thg ta cũng đếm đc có 2 cặp tia đối và nếu ta vẽ 3 đg thg thì cũng đếm đc 3 cặp tia đối
vậy 20 điểm thì cũng có 20 cặp tia đối
B= 1/ 1.2.3 + 1/ 2.3 4 + 1/ 3.4.5 + .... + 1/ 18.19.20
Ta có:
1/ 1.2 - 1/ 2.3 = 2/ 1.2.3
1/ 2.3 - 1/3.4 = 2/ 2.3.4
Từ đó Ta có: B = 1/2 . ( 2/ 1.2.3 + 2/ 2,3.4 + ... + 2/ 18. 19. 20 )
= 1/2 .( 1/ 1.2 – 1/ 2.3 + 1/ 2.3 - .....- 1/19.20)
= 1/2. ( 1/ 1.2 – 1/ 19.20 ) = 1/ 2 . 189/380 = 189/760
\(B=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+....+\frac{1}{18\cdot19\cdot20}\)
\(B=\frac{3-1}{1\cdot2\cdot3}+\frac{4-2}{2\cdot3\cdot4}+...+\frac{20-18}{18\cdot19\cdot20}\)
\(2B=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+...+\frac{2}{18\cdot19\cdot20}\)
\(2B=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{18\cdot19}-\frac{1}{19\cdot20}\)
\(2B=\frac{1}{1\cdot2}-\frac{1}{19\cdot20}\)
\(\Rightarrow B=\left(\frac{1}{1\cdot2}-\frac{1}{19\cdot20}\right)\div2=\frac{189}{380}\div2=\frac{189}{760}\)
1+1.2=1+2=3
\(1+1.2=1+2=3\)