Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ ĐKXĐ:
\(1-sinx>0\Leftrightarrow sinx\ne1\)
\(\Rightarrow x\ne\frac{\pi}{2}+k2\pi\)
b/ ĐKXĐ:
\(\left\{{}\begin{matrix}sinx.cosx\ne0\\tanx+4cotx+2\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}sin2x\ne0\\tan^2x+2tanx+4\ne0\left(luôn-đúng\right)\end{matrix}\right.\)
\(\Rightarrow2x\ne k\pi\Rightarrow x\ne\frac{k\pi}{2}\)
c/
\(\left\{{}\begin{matrix}\frac{1-cosx}{2+cosx}\ge0\\2+cosx\ne0\end{matrix}\right.\) \(\Rightarrow x\in R\)
Nhìn thấy đạo hàm bằng định nghĩa là thấy ớn, dài dữ dội
- Khi \(x>1\) \(\Rightarrow f\left(x\right)=\frac{4x-4}{x+1}\)
\(\Delta x=x-x_0\) \(\Rightarrow\Delta y=\frac{4\Delta x+4x_0-4}{x_0+\Delta x+1}-\frac{4x_0-4}{x_0+1}=\frac{8\Delta x}{\left(x_0+1\right)\left(x_0+1+\Delta x\right)}\)
\(\Rightarrow f'\left(x_0\right)=\lim\limits_{\Delta x\rightarrow0}\frac{8\Delta x}{\Delta x\left(x_0+1\right)\left(x_0+1+\Delta x\right)}=\frac{8}{\left(x_0+1\right)^2}\)
- Khi \(x< 1\Rightarrow f\left(x\right)=2x-2\)
\(\Delta x\) là số gia của \(x_0< 1\)
\(\Rightarrow\Delta y=2\left(x_0+\Delta x\right)-2-\left(2x_0-2\right)=2\Delta x\)
\(\Rightarrow f'\left(x_0\right)=\lim\limits_{\Delta x\rightarrow0}\frac{2\Delta x}{\Delta x}=2\)
- Khi \(x\rightarrow1^+\Rightarrow\Delta y\rightarrow2\left(1+\Delta x\right)-2\rightarrow2\Delta x\)
\(\lim\limits_{x\rightarrow1^+}f'\left(x\right)=\lim\limits_{\Delta x\rightarrow0}\frac{2\Delta x}{\Delta x}=2\)
\(\lim\limits_{x\rightarrow1^-}f'\left(x\right)=\lim\limits_{x\rightarrow1^-}\frac{8}{\left(1+1\right)^2}=2\)
\(\Rightarrow f'\left(1\right)=2\)
gọi số cần tìm là abcdef (a#0 ; a;b;c;d;e;f € A ; f chẵn )
f có 3 cách chọn
a có 5 cách chọn lọc
b;c;d;e đều có 6 cách chọn
=> có 3*5*6*6*6*6 = 19440 số thỏa mãn yêu cầu bài toán
b) gọi số cần tìm là abcdef (a#0;f=0,5 ; a;b;c;d;e;f € A )
f=0,5 => f có 2 cách chọn
a có 5 cách chọn
b;c;d;e đều có 6 cách chọn
=> có 2*5*6*6*6*6 = 12960
Theo giả thiết, nếu ba dố a, b, c lập thành cấp số nhân thì : \(ac=b^2\)(1)
Lấy Logarit cơ số N hai vế của (1) ta có :
\(\Leftrightarrow\log_N\left(ac\right)=\log_Nb^2\Leftrightarrow\log_Na+\log_Nc=2\log_Nb\left(2\right)\)
Sử dụng công thức đổi cơ số :
Từ (2) \(\Leftrightarrow\frac{1}{\log_aN}+\frac{1}{\log_cN}=\frac{2}{\log_bN}\Leftrightarrow\frac{1}{\log_aN}-\frac{1}{\log_bN}=\frac{1}{\log_bN}-\frac{1}{\log_cN}\)
\(\Leftrightarrow\frac{\log_bN-\log_aN}{\frac{1}{\log_aN}.\frac{1}{\log_bN}}=\frac{\log_cN-\log_bN}{\frac{1}{\log_cN}.\frac{1}{\log_bN}}\Leftrightarrow\frac{\log_bN-\log_aN}{\frac{1}{\log_cN}-\frac{1}{\log_bN}}=\frac{\log_aN}{\log_cN}\)
\(\Rightarrow\frac{\log_aN-\log_bN}{\frac{1}{\log_bcN}-\frac{1}{\log_cN}}=\frac{\log_aN}{\frac{1}{\log_cN}}\)
1/ 30^4=2^4.3^4.5^4 nên có 5.5.5=125 ước
Vậy có 125-2=123 số thỏa yc đề bài.
2/ biết 60=2^2.3.5 có 3.2.2=12 ước, Vậy có 125-12=113 số thỏa yc đề bài.