Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo giả thiết :
\(\Leftrightarrow\log_xa+\log_zc=2\log_yb\)
\(\Leftrightarrow\frac{1}{\log_ax}+\frac{1}{\log_cz}=\frac{2}{\log_by}\)
\(\Rightarrow\frac{1}{\log y_b}=\frac{2\log_ax.\log_cz}{\log_ax+\log_cz}\)
\(\Rightarrow\) Điều phải chứng minh
\(\lim\limits_{x\rightarrow1}\frac{x^3-4x^2+3}{x^2-1}=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left(x^2-3x-3\right)}{\left(x-1\right)\left(x+1\right)}=\lim\limits_{x\rightarrow1}\frac{x^2-3x-3}{x+1}=\frac{1-3-3}{2}=-\frac{5}{2}\)
Để hàm số liên tục tại x=1
\(\Leftrightarrow a+\frac{5}{2}=-\frac{5}{2}\Rightarrow a=-5\)
Theo giả thiết ta có : \(\cot A+\cot C=2\cot B\)
\(\Leftrightarrow\frac{\sin\left(A+C\right)}{\sin A\sin C}=\frac{2\cos B}{\sin B}\)
\(\Leftrightarrow\sin^2B=2\sin B\sin C\cos B=\left[\cos\left(A-C\right)-\cos\left(A+C\right)\right]\cos B\)
\(\Leftrightarrow\sin^2B=\cos\left(A-C\right)\cos B-\cos\left(A+C\right)\cos B=-\cos\left(A-C\right)\cos\left(A+C\right)+\cos^2B\)
\(\Leftrightarrow\sin^2B=-\frac{1}{2}\left(\cos2A+\cos2C\right)+1-\sin^2B=-\frac{1}{2}\left(1-2\sin^2A+1-2\sin^2C\right)+1-\sin^2B\)
\(\Rightarrow2\sin^2B=\sin^2A+\sin^2C\Leftrightarrow2b^2=a^2+c^2\)
Vậy chứng tỏ \(a^2,b^2,c^2\) theo thứ tự đó cũng lập thành một cấp số cộng
Theo đầu bài ta có : \(\cot\frac{A}{2}+\cot\frac{C}{2}=2\cot\frac{B}{2}\Leftrightarrow\frac{\sin\frac{A+C}{2}}{\sin\frac{A}{2}\sin\frac{C}{2}}=2\frac{\cos\frac{B}{2}}{\sin\frac{B}{2}}=2\frac{\sin\frac{A+C}{2}}{\cos\frac{A+C}{2}}\)
\(\Leftrightarrow\sin\left(\frac{A+C}{2}\right)\cos\left(\frac{A+C}{2}\right)=2\sin\frac{A}{2}\sin\frac{C}{2}\sin\frac{A+C}{2}=\left(\cos\frac{A-C}{2}-\cos\frac{A+C}{2}\right)\sin\frac{A+C}{2}\)
\(\Leftrightarrow2\sin\frac{A+C}{2}\cos\frac{A+C}{2}=\cos\frac{A-C}{2}\sin\frac{A+C}{2}\)
\(\Leftrightarrow2\sin\left(A+C\right)=\frac{1}{2}\left(\sin A+\sin C\right)\)
\(\Leftrightarrow\sin A+\sin C=2\sin B\Rightarrow a+c=2b\)
Chứng tỏ 3 cạnh của tam giác lập thành cấp số cộng
Theo giả thiết ta có hệ : \(\begin{cases}A=90^0\\a,b,\frac{\sqrt{6}}{3},c\end{cases}\)\(\Leftrightarrow\begin{cases}a^2=b^2+c^2\\\frac{2}{3}b^2=ac\Leftrightarrow b^2=\frac{3}{2}ac\end{cases}\)
Từ đó suy ra \(a^2=\frac{3}{2}ac+c^2\Leftrightarrow2a^2=3ac+2c^2\Leftrightarrow\left(2a+c\right)\left(a-2c\right)=0\)
\(\Rightarrow a=2c\left(2a+c>0\right)\)
Mà \(\cos B=\frac{c}{a}=\frac{1}{2}\Rightarrow B=60^0,C=30^0\)
Vậy tam giác ABC là tam giác nửa đều
Nếu 3 cạnh a, b, c lập thành cấp số cộng thì ta có a + c = 2b
\(\Leftrightarrow\sin A+\sin C=2\sin B\Leftrightarrow2\sin\frac{A+C}{2}\cos\frac{A-C}{2}=4\sin\frac{B}{2}\cos\frac{B}{2}\left(1\right)\)
Vì \(A+C=180^0-B\Rightarrow\frac{A+C}{2}=90^0-\frac{B}{2}\)
<=> \(\sin\frac{A+C}{2}=\sin\left(90^0-\frac{B}{2}\right)=\cos\frac{B}{2}\) hoặc \(\cos\frac{A+C}{2}=\cos\left(90^0-\frac{B}{2}\right)=\sin\frac{B}{2}\) (*)
Do đó (1) trở thành :
\(\Leftrightarrow\sin\frac{A+C}{2}\cos\frac{A-C}{2}=2\sin\frac{A+C}{2}\cos\frac{A+C}{2}\)
\(\Leftrightarrow\cos\frac{A-C}{2}=2\sin\frac{B}{2}\)
\(\Leftrightarrow\cos\frac{A-C}{2}=2\cos\frac{A+C}{2}\)
\(\Leftrightarrow\cos\frac{A}{2}\cos\frac{C}{2}+\sin\frac{A}{2}\sin\frac{C}{2}=2\cos\frac{A}{2}\cos\frac{C}{2}-2\sin\frac{A}{2}\sin\frac{C}{2}\)
\(\Leftrightarrow\cos\frac{A}{2}\cos\frac{C}{2}=3\sin\frac{A}{2}\sin\frac{C}{2}\)
\(\Leftrightarrow\cot\frac{A}{2}\cot\frac{C}{2}=3\) => Điều phải chứng minh
Bạn viết lại đề được ko? Ko hiểu \(\frac{x'+x}{x}\) với \(x\ne0\) là gì
Các câu dưới cũng có kí hiệu này, chắc bạn viết nhầm sang kí hiệu nào đó, nó cũng ko phải kí hiệu đạo hàm
Từ giả thiết ta có hệ phương trình : \(\begin{cases}\tan A.\tan B=6\\\tan A.\tan C=3\end{cases}\)
Mặt khác, ta cũng có : \(-\tan B=\tan\left(A+C\right)=\frac{\tan A+\tan C}{1-\tan A.\tan C}=\frac{\tan A+\tan C}{1-3}=-\frac{1}{2}\left(\tan A+\tan C\right)\)
\(\Leftrightarrow2\tan B=\tan A+\tan C\)
\(\Leftrightarrow2\tan A\tan B=1\tan^2A+\tan A.\tan C\)
\(\Leftrightarrow2.6=2\tan^2A+3\)
\(\Leftrightarrow\tan^2A=9\)
Theo giả thiết : \(\tan A\tan B=6>0\)
\(\tan A\tan C=3>0\)
Cho nên \(\tan A>0,\tan B>0,\tan C>0\)
Suy ra \(\tan A=3,\tan B=2,\tan C=1\)
Điều đó chứng tỏ \(\tan A,\tan B,\tan C\) lập thành cấp số cộng có công sai d = 1
Theo giả thiết, nếu ba dố a, b, c lập thành cấp số nhân thì : \(ac=b^2\)(1)
Lấy Logarit cơ số N hai vế của (1) ta có :
\(\Leftrightarrow\log_N\left(ac\right)=\log_Nb^2\Leftrightarrow\log_Na+\log_Nc=2\log_Nb\left(2\right)\)
Sử dụng công thức đổi cơ số :
Từ (2) \(\Leftrightarrow\frac{1}{\log_aN}+\frac{1}{\log_cN}=\frac{2}{\log_bN}\Leftrightarrow\frac{1}{\log_aN}-\frac{1}{\log_bN}=\frac{1}{\log_bN}-\frac{1}{\log_cN}\)
\(\Leftrightarrow\frac{\log_bN-\log_aN}{\frac{1}{\log_aN}.\frac{1}{\log_bN}}=\frac{\log_cN-\log_bN}{\frac{1}{\log_cN}.\frac{1}{\log_bN}}\Leftrightarrow\frac{\log_bN-\log_aN}{\frac{1}{\log_cN}-\frac{1}{\log_bN}}=\frac{\log_aN}{\log_cN}\)
\(\Rightarrow\frac{\log_aN-\log_bN}{\frac{1}{\log_bcN}-\frac{1}{\log_cN}}=\frac{\log_aN}{\frac{1}{\log_cN}}\)