Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
SSH:(20152-12):10+1=2015
(12-22)+(32-42)+(52-62)+...+(20132-20142)+20152
-10+(-10)+(-10)+...+(-10)+20152
-10x(2015-1):2+20152=12
=> C=12
a) \(=\left(127+73\right)^2=200^2=40000\)
b) \(=18^8-\left(18^8-1\right)=1\)
c) \(=\left(100+99\right)\left(100-99\right)+\left(98+97\right)\left(98-97\right)+...+\left(2+1\right)\left(2-1\right)\)
\(=100+99+98+97+...+2+1=5050\)
d) biến đổi thành \(20^2-19^2+18^2-17^2+..+2^2-1^2\)
rồi giải ra như trên
\(=\left(1-2\right)\left(1+2\right)+\left(3-4\right)\left(3+4\right)+...+\left(2003-2004\right)\left(2003+2004\right)+2005^2\\ =-\left(1+2\right)-\left(3+4\right)-...-\left(2003+2004\right)+2005^2\\ =-\left(1+2+3+...+2003+2004\right)+2005^2\\ =-\dfrac{\left(2004+1\right)\cdot2004}{2}+2005^2\\ =2011015\)
1.
$=153^2+2.47.153+47^2=(153+47)^2=200^2=40000$
2.
$=1,24^2-2.1,24.0,24+0,24^2=(1,24-0,24)^2=1^2=1$
3. Không phù hợp để tính nhanh
4.
$=15^8-(15^8-1)=1$
5.
$=(1^2-2^2)+(3^2-4^2)+(5^2-6^2)+...+(2019^2-2020^2)$
$=(1-2)(1+2)+(3-4)(3+4)+(5-6)(5+6)+...+(2019-2020)(2019+2020)$
$=(-1)(1+2)+(-1)(3+4)+(-1)(5+6)+....+(-1)(2019+2020)$
$=(-1)(1+2+3+4+....+2019+2020)=(-1).2020(2020+1):2=-2041210$
6:
\(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =1.\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =\left(2^4-1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =\left(2^8-1\right)....\left(2^{2020}+1\right)+1\\ =\left(2^{2020}-1\right)\left(2^{2020}+1\right)+1\\ =2^{4040}-1+1=2^{4040}\)
\(41^2+82\times59+59^2=41^2+2\times41\times59+59^2=\left(41+59\right)^2=100^2=10000\)
BÀI NÀY MÌNH ĐƯA VỀ HẰNG ĐẲNG THỨC THỨ 1 NHA : ( A + B ) ^2
41^2 + 89 . 59 . 59^2
= 41^2 + 2 . 41 . 59 + 59^2
= ( 41 + 59 ) ^2 = 100^2 = 1000
= 50
Nho t ick nha
\(\left(102+82+62+42+22\right)-\left(12+32+53+72+92\right)\)
\(=102+82+62+42+22-12-32-52-72-92\)
\(=\left(102-92\right)+\left(82-72\right)+\left(62-52\right)+\left(42-32\right)+\left(22-12\right)\)
\(=10+10+10+10+10\)
\(=10.5\)
\(=50\)