Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+\sqrt{48}}}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2-\sqrt{3}\right)^2}}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{48-20+10\sqrt{3}}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}\)
\(=\sqrt{5\sqrt{3}+25-5\sqrt{3}}\)
= 5
\(\dfrac{\sqrt{3}-\sqrt{5+\sqrt{24}}+\sqrt{\sqrt{72}+11}}{\sqrt{6+\sqrt{20}}+\sqrt{2}-\sqrt{7+\sqrt{40}}}\)
\(=\dfrac{\sqrt{3}-\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}+\sqrt{\left(3+\sqrt{2}\right)^2}}{\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{2}-\sqrt{\left(\sqrt{2}+\sqrt{5}\right)^2}}\)
\(=\dfrac{\sqrt{3}-\sqrt{2}-\sqrt{3}+3+\sqrt{2}}{\sqrt{5}+1+\sqrt{2}-\sqrt{2}-\sqrt{5}}\)
\(=3\)
\(2\sqrt{3+\sqrt{5}}=\sqrt{2}\cdot\sqrt{6+2\sqrt{5}}\)
\(=\sqrt{2}\cdot\sqrt{\left(\sqrt{5}+1\right)^2}=\sqrt{2}\cdot\left(\sqrt{5}+1\right)\)
\(=\sqrt{10}+\sqrt{2}>\sqrt{10}+1\)
Vậy ....
......................?
mik ko biết
mong bn thông cảm
nha ................
a/ \(A=\sqrt{6-2\sqrt{5}}-\sqrt{5}\)\(=\sqrt{\left(\sqrt{5}\right)^2-2\sqrt{5}+1^2}-\sqrt{5}\)\(=\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{5}\)\(=\sqrt{5}-1-\sqrt{5}\)\(=-1.\)
Bạn kiểm tra lại câu b với c đi, hình như sai đề rồi.